
www.manaraa.com

DOCUMENT 2ESUME

ED 201 325 IR OV :97

AUTHOR Clymer, S. J.
TITLE Software Partitioning Schemes for Ad7ance: simulation

Computer Systems. Final Report.
INSTITUTION Teledyne Brown Engineering, Huntsville, Al_
SPONS AGENCY Air Force Human Resources Lab., Brocs AFE Texas.
REPORT NO AFHRL-TR-80-42(1)
PUB DATE Feb 81
CONTRACT F33615-79 -C -0013
NOTE 158p.

EDES PRICE
DESCRIPTORS

MF01/PC07 Plus Postage.
*Computer Assisted Instruction; *C=2puter :ograms;
Databases; *Flight Training; Manage:lent rmation
Systems; *Mathematical Models; Simu_ated

LBSTRACT
Conducted to design software par:itiL 71:7 tz,l-tni4.

for use by the Air Force to partition a large flight E :Z7

program for optimal execution on alternative configura':i.or,
study resulted in a mathematical model which defines
for an optimal partition, and a manually demonstrated par,7.--:
algorithm design which implements heuristic controls base
mathematical model statement. This report reviews the stuL.
objectives, background, approach, and results: defines t: Lre
partitioning problem environment, partitionitc goals, ar-. .Lt

approaches; presents the technical details of the softwa.:
partitioning, algorithm which was developed au:. manuail-7
under this contract; addresses implementation conside
recommends a schedule of tasks for algorithm automatio.
and validation. A brief recapitulation of the study
work, and areas of further study concludes the report. 73

include user inputs and report formats. (CHC)

.=***A.***=*******
Reproductions supplied by EDRS are the best that can be made

from the original document.
41A**- **3#****

www.manaraa.com

g*HRL-TR-80-42 (Part 1)

U S. DEPARTMENT OF HEALTH.
EDUCATION & WELFARE
NATIONAL INSTITUTE OF

EOUCATION

'HIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED Fa OM
-HE PERSON OR ORGANIZATION OR

IT POINTS OF VIEW OR OPisor:NS
STATED DO NOT NECESSARILY PEP.E-
SENT OFFICIAL NATIONAL INSTITUTE 'Dr
F_DuCAT'ON POSITION OR POLICY

S, ARE PARTITIONING SCHEMES F ADVANCED
SIMULATION COMPUTER SYS7E'.iS

U

BT

S. J. CiVrru
Syslcms Division

Teledyne Brown Engineering
300 Sparkman Drive

Huntsville, Alabama 35807

OPERATIONS TRAINING DIVEiON
Williams Air Force _lase. I3224

February 11);.'

Final Rep{:-

Approved for public release: :Ian 7:1111111.

LABORATORY

AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE,TEXAS TaZ35

0

www.manaraa.com

NOTICE

-i,-,ernment dra ecifications, or other data are used for any other
than a :.. tfinitci:- related Goveunen procurement operr::in. the Government -..derelm nears

respimiiniliny nor any oblic ,0)11 whatsoever, and tin- i'act that the Government may have
gar nula furnished. ar in any Na :- supplied the said 7awings. specifications or other- data
-7' not to iee rep-riled by implicit:, or otherwise, as in ai:v manner licensing the holder or any
e.:,:her person or corporation, ores :eying any rights or perm i,sion ::, manufacture. use, or sell
any patentee' iLention that may, 0. any -say be related the

"'Ns -final r,-570-.,r- was subn Systems Divisive.. Te 13rov n Enameering. 300
Huntsvili: 35807, under Cons ;3615-78-G- '013. Project

11. .with rations vision, Air Force Hum:: -,,urces Labon: =.- (AFSC).
Base. 35224. Pat Price win Contract Mo:::tor for the

Laboratory.

1This report iaas.,,een reviewei: Office of Public Affac:s 'A) and is rebasable to the
Tehnieml Informatior_ i NTIS). At INTIS, it be available to the general

foreign nation,

This techn: - -port has been review- and is approved for it -01ication.

NlARTI" R .i.1-21(WAY. Technical Dir or
Operations Training Dig ision

ItONALI) --ERRY. USAF

,,mmar'ier

www.manaraa.com

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE
READ INSTRUCTIONS

BEFORE COMPLETING FORM
I. REPORT NUMBER

AEHRL-TR-80-42 (Part I)
2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (end Subtitle)

SOFTWARE PARTITIONING SCHEMES FOR ADVANCED
SIMULATION COMPUTER SYSTEMS .

5 TYPE OF REPORT & PERIOD COVERED

Final

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(e)

S.J. Clymer

B. CONTRACT OR GRANT NUMBER(S)

E33615-78-C-01113

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Systems Division. Teledyne Brown Engineering
3(30 Sparkman Drive
Huntsville. Alabama 35807

1: PROGRAM ELEMENT. PROJECT. TASK
AREA 8 WORK UNIT NUMBERS

62205E
611 42304

II.

14

CONTROLLING OFFICE NAME AND ADDRESS

HQ Air Force Human Resources Laboratory (AESC)
Brooks Air Force Base, Texas 78235

12 REPORT DATE

February 1981
r3. NUMBER OF PAGES

462
MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)

Operations Training Division
Air Force Human Resources Laboratory
Williams Air For Base. Arizona 85224

15 SECURITY CLASS. (of this report)

i riclassified

is., DECLASSIFICATION'DOWNGRADING
cCHEDMLE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release: distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20. if different from Report)

ltl.

s

SUPPLEMENTAMY NOTES

This report consists of two parts. Part I includes pages 1 through 152. Part II contains pages 153 through 460.

19. Key WORDS (Continue on reverse side If necessery and Identify by block number)

multiple processors data base management
software partitioning software design
real-time computational design evaluation computer systems
flight simulation

20. ABSTRACT (Continue on reverse side If necessary and Identify by block number)

The overall objective of this study was to design software partitioning techniques that can he used by the Air
Force to partition a large flight simulator program for optimal execution on alternative configurations. The results
were a mathematical model which defines characteristics for an optimal partition and a manually demonstrated
partitioning algorithm design which implements heuristic controls based on the mathematical model statement.

--,
OD

FORM
I JAN 73 14

it

Unclassified

TURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

www.manaraa.com

PT.72FLCE

This report was prepared by :he Sys=m11: A_Edyne Brown

Engineer-L:1z, Huntsville Alabama. The w:7 w... unte7: Contract

F33615-7C-0013 with the U.S. Ai Forcr, ?1/4-11.-ce Laboratory

(AFHRL).

www.manaraa.com

TALE OF CONTENTS

1. INTRCDUCTION .

_.1 Majectives

Pa:-

_.2 Tackground
1.3 Approach .

1.4 lesult3 .

2. SOFT;,-ARE PARTITICNINC

2.1 Partitioning 10

2.2 Design Goals . .
14

2.3 Alternative Appr:., -=s 15

3. MODEL DEVELOPMENT lc

3.1 Mathematical Stc ement 18

3.2 Algorithm Desig- Highlights 3C

3.3 Feasibility Den istration 4E

4. MODEL IMPLEMENTAT:Oi COWTDERATIONS

4.1 Flight Train:7.g Simulator Evaluation Environment . . 55

4.2 Data base Ma7.2gement 60

4.3 Target Compull,:2r and Source Language Selection 71

4.4 Recommended _implementation Schedule 7E

5. CONCLUDING REMARK 8

5.1 Findings 8.

5.2 Related Work 8r

5.3 Areas for Fu-:ner Study 8-

APPENDIX A. USER INPUTS 89

APPENDIX B. REPORT FORKL: 138

APPENDIX C. FEASIBILITY U01)NSTRATION 153

APPENDIX D. DETAILED DESIG- 365

3

I

www.manaraa.com

:Igure

LIST OF ILLL-7__TIONS

Titl, Page

11 System Life Cycle . 11

Ma_or Partitioning Algor _71= Steps . . 33

User Input Process Flew 35

Basic Partitioning Algorif= Control Flow 38

Priority Heuristic Selec:-Dra Process . . c 40

(Processor toad Balance Heristic 41

Memory Allocation Balance Heuristic . 43

Reduce Development Cost Heuristic 45

Augmented Partitioning Algorithm Flow . 47

10 Report Generator Design . 49

1 1 Sample Problem Configuration 51

12 Sample Configuration Memory Processor
Communications 52

13 Application Flow 53

14 Hierarchy of Flight Trainer Documents . . 56

15 Computational Design Evaluation 59

16 Algorithm Implementation Tasks 79

17 Projected Time Relationship of Tasks 81

4

www.manaraa.com

Table

-ST OF TABLES

Title Page

1 Basic Goal Prcmr_m Matrix Sizin7 31

L Internal ning Algorithm _sntrol and LookUp

Tables Establ: by PASS 1 36

3 User Input EC.- 'e7-.Drts that are Specified in

Appendix B .
37

4 Development Di;c:_ments and Their Relationship to
the Partitiorny Algorithm for Software Systems . . . 58

5 Data Block (arz,:cterization 62

6 Memory Devi: Characterizatio7, 63

7 Task Charac_erization 66

8 Processor C .aracterization 68

9 External Fie Sizing Requirements 73

10 Internal Algori:hm Table Sizing Requirements 76

8
5

www.manaraa.com

1. INTRODUCTION

This report documents the Software Partitioning Schemes for the

Advanced Simulation Computer Systems Study performed by Teledyne Brown

Engineering (TBE) under Contract No. F33615-78-C-0013 for the Air Force

Human Resources Laboratory (AFHRL). The report contains five sections.

Section 1 introduces the study objectives, background, approach, and re-

sults. Section 2 defines the software partitioning problem environment,

partitioning goals, and alternative approaches. Section 3 presents the

technical details of the resultant software partitioning algorithm
developed and manually demonstrated under this contract. Section 4

addresses implementation considerations and recommends a schedule of

tasks for algorithm automation verificalion and validation. Section S

concludes with a brief recapitulation of the study findings, related

work, and areas of further study.

1.1 OBJECTIVES

The overall objective for this study was to design software

partitioning techniques that can be used by the Air Force to partition a

large flight simulator program for optimal execution on alternative mul-

tiple processor configurations. In particular, the Air Force needs a

software partitioning algorithm for use in conceptualizing, manipulat-

ing, and evaluating candidate flight trainer computational designs.

Major design objectives pursued by TBE in deriving the software parti-

tioning algorithm included emphasis on potential automated steps, manual

feasibility demonstration, and recommended implementation steps for its

use by the Air Force.

1.2 BACKGROUND

It has been evident for some time that significant increases in

computer system performance may be realized by using two or more smaller

processors connected in parallel, as opposed to one large processor.

This concept has been utilized in many real-time flight simulators where

each of several computers performs a specific task. Future trends are

toward further expansion of this concept to include nct only tasks that

may be executed in parallel but also tasks that must execute serially

because of temporal relationships. This causes many multiple processor

configurations to be applicable to flight training simulators and com-

plicates the problem of allocating the software among the processors.

Typically, the design of a computer system is an iterative pro-

cedure. Certain portions of the hardware and software can be designed

independently, but the remaining portions must be designed interac-

tively. With the rising cost of software, it has become more and more

important to know the effect of computer hardware desii-a on the design of

www.manaraa.com

the software as well as the effect of the software design on the selec-
tion and interconnection of the hardware to develop the optimum design
for the computer system.

This study has pursued the development of an algorithm that will
facilitate the partitioning of both parallel and sequentially dependent
tasks to a given hardware configuration. The algorithm has the potential
of being automated.

1.3 APPROACH

This study was comprised of three phases: Phase I - Literature
Search, Phase II Simulator Analysis, and Phase III Algorithm Design
and Demonstration. This three-phased approach provided a logical
sequence of research and analysis that resulted in the delineation of the
partitioning technique presented in this report.

The Phase I literature search focused on current documentation
in two major technical areas. The first area concerned flight training
simulator computational subsystem designs. The second area addressed
software partitioning schemes for allocation of parallel and serial
application tasks to advanced multiple processor configurations.

The Phase II effort was subdivided into two parts. The first
part was the analysis of literature collected to properly identify the
software partitioning goals with respect to flight training simulator
designs. The second part was the selection and expansion of the specific
approach for the techniques to be applied in the algorithm design to
achieve the design goals. Partitioning approaches considered included
manual allocation schemes, real-time dynamic task allocation schemes,
and a mathematical goal program statement of the allocation problem. The

mathematical goal program model approach was selected because of its
potential for systematically obtaining optimal partitions and related
quantitative measures in an automated mode, which are responsive to
alternative candidate design features. The features and measures that
can be modeled are described in Section 3 in terms of the mathematical
model, algorithm design, and algorithm feasibility demonstration. Model
measures include task sizing and timing; processor utilization; memory
storage, retrieval, and sizing; and real-time task constraints and
relationships.

Some problems were encountered in pursuing the Phase III design
to implement the mathematical goal program model when allocating a large
number of tasks and data blocks to a large number of processors, memo-
ries, and peripherals comprising the candidate configuration. It became
evident that a heuristic goal program algorithm needed to be designed
that interfaces with a linear program optimizer to obtain "good" task
partition allocations for large partitioning problems. TBE's Input/
Output Requirements Language (IORL) supplemented with flowcharts was

8

1 01

www.manaraa.com

used to delineate the algorithm design and provide the steps for perform-

ing a manual demonstration of the algorithm's feasibility.

1.4 RESULTS

One of the most important results of this study was a mathemati-

cal model defining partitioning parameters and measurements. From these

parameters, a set of guidelines has been recommended for the establish-

ment of a centralized automated flight training simulator computational

design data base repository for the Air Force. These design parameters

address five major areas, including flight training simulator computa-

tional interface requirements, baseline software task/data descriptions

(independent of hardware implementation), candidate hardware configura-

tion specification, a technology data base, and (most important) design

evaluation user interface data options. These parameters along with the

partitioning mathematical model provide steps for the implementation of

an automated partitioning algorithm for real-time simulators. Detailed

recommendations for algorithm implementation are provided in Section 4.

Section 5 expands TBE's findings, including related aspects of

our Advanced Multiple Processor Configuration study contract encompass-

ing areas for further research and development. In the multiple proces-

sor area, the impact of heterogeneous processor configurations and

potential reconfiguring capabilities is currently being investigated. A

major area for future study is the impact of higher order architectures

on partitioning allocation.

11 911

www.manaraa.com

2. SOFTWARE PARTITIONING

To develop the software partitioning algorithm design goals, TBE
addressed the definition from both general system software design and
particular flight training simulator software design viewpoints. This
section supplies the basic definition of the software partitioning
environment, the design goals selected for flight training simulator
software partitioning features, and alternative approaches considered
during this study.

2.1 PARTITIONING ENVIRONMENT

To fully appreciate the software partitioning environment and
its associated steps, one must first examine its relationship with the
system life cycle. Then, flight training simulator system life-cycle
peculiarities must be considered. The questions posed by this study in
both these areas concerned the identification of the software applica-
tion cask features that are peculiar to advanced real-time simulation
computational systems and that influence the software design partition-
ing process. The system and flight trainer life cycles are now described
for the general system, followed by a description of the flight training
simulator software partitioning features. Emphasis was placed on iden-
tifying software features that characterize an optimal partitioning
scheme and that account for alternative candidate configurations and
provide partitions that meet real-time load balance constraints.

2.1.1 System Life Cycle

Figure 1 depicts the major phases of a system development
effort. The development phases that directly relate to or influence
software partitioning include subsystem interface requirements, sub-
system functional specification, and subsystem detailed design. In
addition, during the operational maintenance of the system, any changes
that are deemed necessary (to either correct for a design deficiency or
oversight, or to implement an expanded capability) imply that a reparti-
tioning of tasks may be needed to accommodate the required change. This
phasing relationship to partitioning holds for any system, whether it is
an aircraft, computer center, air defense system, ..., or a flight train-
ing simulator system.

For purposes of this study, the detailed design phase was
selected as the major area where software partitioning parameters become
known. Prior to this phase, a system partitioning is generally performed
to denote the major subsystems and their respective interface functions.
After the detailed design phase; actual hardware is pro.ured from which
prototype build implementation is initiated. Therefore, the detailed
design phase has the greatest influence on mapping software tasks to
hardware and vice versa.

10 -L. 4

www.manaraa.com

Required operational capability

Conceptual
system

System
requirements

System
development

Interface and
subsystem
requirements

SW

Subsystem
development

Functional
specification

Procurement

[le--System
acceptance
testing

,401

Integration and

verification
;,asting

SW

Figure 1. The system life cycle addresses partitioning at subsystem,

function, and detailed design phases for new and/dr modi-

fied system development efforts.

:5 11
to

www.manaraa.com

The design of a multiple computer system traditionally has begun
with the hardware selection. Once the computer system has been selected,
the development of software begins. During development and even after
the system is installed in the field, there are various modifications to
both the hardware and the software. Because software has traditionally
lagged the hardware development activities, the hardware has had a
direct influence on software partitioning. As the details of the soft-
ware tasks become known, projected hardware resources are typically
found to be inadequate, which necessitates the acquisition of additional
processors and/or memories to meet system interface requirements. A
software partitioning algorithm must be able to address software appli-
cation design parameters, which are independent of a particular hardware
configuration, to permit a variety of design tradeoffs to be evaluated
for alternative candidates prior to the exact configuration selection.

Once a system enters the operational phase, maintenance becomes
the prime cost factor (indeed, maintenance cost is the largest cost of
the system life cycle). Change and configuration controls are necessary
for a system or subsystem of any significant size. As technology
advances, new software and hardware architectures may need to be imple-
mented. A tradeoff must be made to decide whether to convert or totally
redesign existing software. A software partitioning algorithm should
provide useful information regarding allocation of current baseline
software design tasks to the new or modified hardware architecture. As
with design development, software partitioning in the operational main-
tenance phase addresses the design details of any proposed changes.

The key factor for flexible software partitioning (from the sys-
tem life-cycle viewpoint) is the ability to define software design
attributes in terms of the dependent application software task/data flow
relationships. The software attributes should remain independent of,
but be mappable to, a particular processor architecture. The prolifera-
tion of requirements languages (RLs) and higher order languages (HOLs)
is a testament to this emerging, philosophy in the DOD community. The
distinction between an RL and an HOL is that RLs are not currently
automated to the extent of target machine code generators for the RL. An
HOL such as JOVIAL, HAL-S, or PL-1 supports interpretation, data manage-
ment, and cod generation from machine-independent HOL source code to an
intermediate level language that can then be specifically translated to
any one of the languages supported by different target machines. Once
the tasks have been defined in a suitable RL and HOL, the problem still
exists as how they can best be partitioned or allocated to the candidate
architecture. Once allocated, the resulting partition should be evalu-
ated in terms of predicted performance and cost/risk assessments by a
software partitioning model. Iterative feedback from this performance
evaluation model can then be used to perturb the partition based on
performance penalties to derive a well-balanced software execution
sequence.

_14
12

www.manaraa.com

2.1.2 Flight Trainer Life Cycle

In addition to problems associated with the general system life-

cycle environment, the simulation training system environment offers

special considerations and problems with respect to software partition-

ing. Aircraft systems are continuously being upgraded, and this causes

changes to training requirements. Manual interfaces change when new or

modified weapons systems, embedded onboard computer systems, and opera-

tional tactical policy changes are introduced. These problems are

really no different from problems encountered during the maintenance

phase of the actual system. The key issue is when and how actual system

changes are received, evaluated, and introduced into the training

requirements.

Actual system test and performance measurement tools can and

should provide useful inputs for simulator training software required to

support the new/modified devices. In the case of embedded computer sys-

tems, simulated training scenarios could provide additional reliability

tests of the actual onboard computer systems as well as the prime goal of

training personnel. As a result of these considerations, the partition-

ing algorithm should facilitate modular design definition input changes

and permit new technology configurations to be introduced as needed to

support a given evaluation. This should also include the ability to fix

allocations of certain functional tasks, such as a set of onboard com-

puter tasks, while permitting others to be allocated by the partitioning

algorithm.

AFHRL supplied a benchmark problem and the detailed design docu-

ments and source code listings from the Advanced Simulator for Under-

graduate Pilot Training (ASUPT, now known as Advanced Simulator for

Pilot Training (ASPT)). These documents were analyzed to obtain esti-

mates on the complexity and sizing of flight simulator software parti-

tioning. This analysis identified 50 major application (both real-time

and support) tasks (some of which would be duplicated to support multiple

training stations, instructor consoles, weapon systems, and aircraft

models). The results of this analysis were presented at an interim

briefing.

It should be noted that a task is related to the application.

Its ultimate operational realization may be software, firmware, hard-

ware, or a combination of these, depending on the selected design config-

uration. The tasks being considered for the partitioning algorithm are

related to the computational subsystem of real-time flight training sim-

ulators.

Further analysis revealed that the trainer computational sub-

system is really comprised of a set of smaller functional subsystems,

such as simulator facility control, visual computational support, and

simulated aircraft mathematical models; thus, the number of processors

and number of tasks for which selected software functions are being

r) 1315

www.manaraa.com

allocated is reduced to approximately 30 tasks to three processo:s using
a common, shared multiport memory. In summary, flight trainer computa
tional configurations have both a functional partitioning of processors
and a task partitioning within each functional processor group.

2.2 DESIGN GOALS

Software partitioning of tasks to alternate candidate multiproc-
essor configurations must be a systematic process based on measurable
evaluation goals. The selected design goals for the partitioning algo-
rithm developed are as follows:

(a) With software system task flow inputs given, partition
tasks to a user-specified multiprocessor hardware configu-
ration subject to input constraints

(b) Identify interdependencies among the tasks that require
communication links

(c) Incorporate dynamic performance evaluation feedback to

determine the best partition to preclude system deadlocks
and account for critical path task precedence orderings

(d) Provide a means of balancing the processing load as a func-
tion of processor utilization, which is evenly distributed
among the processors such that no one processor is satu-
rated while others remain idle for appreciable periods of
time

(e) Provide cross reference of task(s) assigned to each proces-
sor and processor(s) assigned to each task

(f) List critical constraints when a valid partition is not
obtainable

(g) Provide a development cost estimate as a function of task
sizing and instruction mix, which is related in terms of
assigned candidate processor language compilers and debug
tool measures.

In deriving this set of goals, several issues have been dis-
cussed pertaining to the evaluation environment in which the partition-
ing algorithm is to operate. The baseline set of questions was:

(a) At what point(s) in the system development cycle is the
algorithm to be used?

(b) What timeframe and computer resources are anticipated for
candidate evaluations?

1614

www.manaraa.com

(c) To what extent will the system requirements be formatted?
In what format?

(d) To what extent will the alternative candidate design con-
figuration be documented? In what format?

The answers to these questions relate directly to the level of
software partitioning and types of system parameters that can be
modeled, allocated, and measured. In summary, there are no definitive
answers to these questions since each flight trainer evaluation tends to
be tailored to specific needs. This does not mean that systematic
methodologies and standards do not exist, but they do differ from one
project to another. The potential use of an automated partitioning
algorithm will require systematic collectiu. and development of flight
trainer requirements, software specifications, and candidate configura-
tion inputs. This contract has concentrated on the definition of parti-
tioning algorithm logic in terms of design inputs which are transformed
via technology data and user evaluation options to assist and assess the
partitioning of tasks for a given candidate configuration.

2.3 ALTERNATIVE APPROACHES

Software partitioning to date has been primarily a manual proc-
ess based on experience gained in development of previous flight simula-
tors. The designer community continually evolves and improves partition
allocations using projected resource requirements and implementing the
partition to see how well it performs. In some cases, real-time alloca-
tion is determined by a master computer using a predefined assignment
scheme that incorporates certain dynamic application considerations.
These schemes, whether manual or partially preprogrammed controlled, are
not easily automated, since they generally require that a specific sys-
tem allocation be implemented for a given configuration. Manual projec-
tions are limited to a few alternatives for a given type of configura-
tion, but they must be redone for alternative configurations.

In surveying potential automated models to meet the design
goals, the basic problem to be solved is one of distributing the software
system tasks and related data blocks to a candidate hardware architec-
ture network such that a representative stressing simulation load is

handled. In general, this type of problem is typical of mathematical
programming problems addressed in an operations research (OR) environ-
ment. Within this field, there are a variety of algorithms. The follow-
ing are some of the more familiar:

I. Transportation problem of product transport from production
locations to warehouses and customer distribution centers to
meet customer demand at minimum cost.

15

www.manaraa.com

2. Traveling salesman optimal route determination to service
customers

3. Knapsack packing of items required for a camping trip to be
distributed evenly among campers

4. Capital budgeting problem of choosing among independent
investment alternatives to maximize return subject to cur-
rent investment fund constraints

5. Machine shop production scheduling to meet product demand
deadlines with minimum machine restructure between jobs and
given employee mix.

The software partitioning problem has attributes similar to each of
these.

In the case of the software partitioning problem, a descriptive
statement of the model is as follows:

1. Find a partition that best satisfies alternative evaluation
priority functions:

1. Balance the processing load among the processors
b. Balance the memory storage utilization
c. Minimize development costs.

2. Subject to:

a. Real-time task resource requirements
b. Predicted performance simulation feedback.

When defining a software task partitioning model, a number of
factors must be considered. The model can very quickly get out of hand
in terms of size for current optimization techniques. Thus, the model.

design developed under this contract restricted itself to a static allo-
cation problem that is mathematically stated as a linear goal program
problem in Section 3.1. It is static in that it is a generalization of
the real-time application tasks to be allocated to a given candidate
configuration. In this sense it is not a dynamic real-time allocation
algorithm. The static model is very useful in the candidate design
evaluation mode, since many numbers are based on predicted task sizing
and timing plus anticipated computation iteration frequencies to support
given training loads. The static model permits average to worst-case
growth analysis in a sys;:ematically controlled evaluation environment,
which provides the means to ensure a complete design description has been
input and independently provides a measure of processor utilization,
memory utilization and predicted software development cost.

18
16

www.manaraa.com

Even in the static model environment, optimization data base
sizing and numerical roundoff problems are encountered for evaluation of
a computational system involving :such more than three processors, 20
tasks, 40 data blocks, and four. memories. Specific sizing is addressed

in Section 3.2. For this reason, a heuristic model has been designed. A
heuristic model is a means of limiting computations to a logical sequence

of iterative improvements via allocation tradeoffs until a certain

objective level is either found to be feasible or a bottleneck has been
isolated.

This section has discussed partitioning considerations. The re-

sultant algorithm design details are highlighted in Section 3. Imple-

mentation considerations are given in Section 4. Section 5 incorporates
areas for further research with respect to optimizer techniques and data
base selection.

www.manaraa.com

3. MO" EL DEVELOPMENT

Software partitionir
different technical viewpoin
cal definition, the detailed
stration synopsis. The mo

. development is presented from three
aiF -section, including the mathemati-
highlights, and a feasibility demon-
expressed in generic computational

system terms where the major uu Dnents are tasks, data blocks,.proces-
sors, and memories that are partitioned to service an external baseline
load environment. The mathematical model definition delineates all the
parameters and the basic relationships that must be satisfied for a valid
partition. It also provides a statement of objective functions that
permits optimization of the partition when the basic relationships are
found to have a feasible solution (i.e., a feasible partition).

The algorithm design highlights are presented here in terms of
the systematic procedural step features with cross-references to

detailed appendices. Appendix: A provides user input information. Out-
put report formats are provided in Appendix B. Appendix C contains the
feasibility demonstration that emphasizes the user environment of input
formulation, critical intermediate step results, and final output summa-
ries. Detailed computations and design logic are enumerated in

Appendix D.

3.1 MATHEMATICAL STATEMENT

This mathematical statement provides mathematical terminology
and definitions for alternate evaluation priorities and constraint form-
ulation based on a generic statement of a candidate configuration for
which a set of software tasks are to be partitioned. Each mathematical
symbol is defined when first introduced. In addition, Appendix C con-
tains a master list of mathematical symbols and related design defini-
tions. A special effort has been made to use a unique symbol for a givem
entity. It utilizes a combination of symbol definition with a combina-
tion of linear programming and goal programming model formulation termi-
nology. Although knowledge of these modeling and solution techniques is
helpful, it is not essential to the understanding of the basic expression
of the software partitioning problem model.' The solution techniques
with respect to the software partitioning model are considered in the
design highlights of Section 3.2. The model is now stated.

3.1.1 Mathematical Terminology

The mathematical model formulation permits the major decision
variables to be enumerated in terms of a baseline software load for a

1

Ignizio, James P., Goal Programming and Extensions, D. C. Heath and Com-
pany, Lexington, Massachusetts, 1976

18 20

www.manaraa.com

given real-time interval c. length, T. In the case of the flight
trainer, T might be chosen Lo represent the maximum time permissible for
a complete real:ime cycle. The baseline lead could represent a

stressing traini=g mix of tasks and data relationships that must be
performed to suptort the given trainer facility exercise; for example, a
two-on-one, air - =o -air, combat maneuvering situation may be selected.
For more detailed partitioning loads, T could be selected to represent a
specific segment of the real-time cycle to further analyze and partition
parallel versus dependent task/data flow relationships.

The major decision variables (outputs of the algorithm) with re-
spect to software partitioning allocation are defined as follows:

xtp = 1, if task t is assigned to execute on processor p

= 0, otherwise

e
tp

- number of task t executions on processor p for the
evaluation problem time period

Ytp
- development cost to implement task t on processor p as

currently partitioned

s
ra0

-74 1, if memory storage m contains block b

= 0, otherwise

hb number of memories where block b is sto-...ed

number of times input block i of task t is input fora
mpti

task t on processor p from memory m.

- number of times output block o of task t is written orw
mpto

updated by task t on processor p to memory m.

These outputs are determined for a given set of software task and candi-
date architecture inputs. The basic algorithm control inputs are

denoted by:

T - number of tasks to be allocated to processors

P - number of processors

M - number of memories

B - number of distinct storage blocks to be allocated to memories
(this includes instruction and data blocks)

www.manaraa.com

Q - number of communication links

- maximum number of input and/or output blocks por task.

The values of these parameters control the overall algorithm sizing,
timing, and looping logic.

The baseline task load may be represented as configuration-
independent, processor-dependent, and memory-dependent input parame-
ters. The configuration-independent input parameters are defined as
follows for each task, t:

N
t

- number of times task t is to be executed during the evalua-
tion interval, T, for which partitioning is being done

S
t

- maximum time limit per task t execution

I
t

number of distinct input blocks for task t

ti
global data block index for task t input block i

A
ti

- percent of information input for task t from block i

0
t

number of distinct output data blocks for task t

0
to

- global data blcck index for task t output block o

Ito
percent of information output from task t to block o.

The processor-dependent task inputs are defined as follows for
task t on processor p:

c
tp

time for task t execution on processor p

R resource task management coefficient for task t on proces-
:p

sor p if time or data enabled task (these tasks require
periodic enablement or polling by the processor to which
they are assigned)

r
tp

resource task management per task t execution on processor
p for slaved enabled task (these tasks are enabled by
another task)

d
tp

- the cost coefficient for developing task t to run on proc-
essor p independent of allocation

6
tp

- the cost coefficient for resource management of task t
development on processor p.

22
20

www.manaraa.com

Section 4.2 discusses the implementation means for computing these
values based on independent task descriptions, processor configuration,
and a technology data base. The mathematical model assumes that these
values are known.

In addition to the task-to-processor allocation relationships,
the storage allocation of blocks to memories operates on a similar con-
cept. A master block list of distinct data and/or instruction blocks is
independently defined and then mapped via the candidate configuration
and technology memory parameter inputs to supply the following parame-
ters with regard to block b, memory m, processor p, and communication
link q:

mb length in bits of block b when stored in memory m

L
m

- length of memory m in bits

a = 1, if access from memory m to processor p exists, i.e.,
mp

there is at least one access link q for m and p

= 0, if otherwise

a bits/second transfer rate from memory m to processor p
mp based on statistical composite of access links for p and m

W = 1, if processor p is permitted to change contents of
mp

memory m, i.e., there is at least one write access link q
from p to m

= 0, if otherwise

w bits/second transfer rate from processor p to memory m
mp

based on statistical composite of write access links for p
and m.

The task relationships to these blocks are defined as part of the real, -

time constraints in Section 3.1.5.

3.1.2 Processor Utilization and Growth Balance

Given the mathematical terms defined in Section 3.1.1, the proc-
essor utilization, U , associated with a partition may be expressed as
follows (for each prgcessor p=1 to P):

T

U = 1
(c + r) e task computation

P T
t=1

tp tp
et

and resource
management time

0 u

21

23

www.manaraa.com

It

+ AtiE ry. .

i=1 m=1
-mp

a
mpti

0
t

12
o=1

task input
processing

M
-lp

atom
task output

m=1 processing

+ R
tp

x
tp

I

An absolute constraint is that:

U s 1 for p=1 to P.

task resource
management

In other words a processor, p, cannot be more than 100% allocated.

The objective function for processor balance may be written:

P-1 P

Minimize IU.
1
- U.I.

1=1 j=i+1

Minimize differences
in processor loads

It should be noted that the presence of absolute values implies a non-
linear objective. The processor utilization balance can be mapped (via a
rarikedorderingoftlle0+WsuchttlatU.'>0.9 to a linear objective

1
for a given partition. P

This objective statement assumes that perfect balance is the
ultimate or optimal partition. The candidate design being considered
may represent only a portion of a bigger design evaluation problem. In

this case, the use of certain processors may be favored, whereas others
'should not be considered- To handle this more realistic partitioning
situation, each processor has two additional parameters, which are user-

specified:

absolute upper limit for processor p's utilization

24
22

www.manaraa.com

G - goal or target limit for processor p's utilization.

With these additional parameters, the following constraints apply:

G < L
P P

U < L
P P

Goal must be
less or
equal to the
absolute limit.

Each processor
must be below
its absolute
limit.

The objective for the optimal partition in terms of processor utiliza-
tion becomes:

P-1 P

Minimize :E: 2: (U.-G.) (U.-G.) .

i i J J

i=1 j=i+1

This basically states that the processor utilization is in balance with
respect to user-specified goals. In the case of a flight trainer soft-
ware partitioning evaluation, G could reflect a percentage that allows
for future growth. Thus, G =4 0.60 reflects a 40% growth factor for
processor p.

The algorithm as currently designed (Section 3.2) assumes that
an initial feasible solution is provided by the candidate design and
utilizes a heuristic solution based on the absolute difference between
the most heavily loaded processor and the least loaded, taking into
account the goal growth reservation to distribute the process load.

3.1.3 Storage Utilization and Growth Balance

Storage utilization, um, may be expressed for each memory unit,
m=1 to M, as:

um = E Znemb.L
m 6=1

2325-

Sum of blocks
stored divided
by total memory

www.manaraa.com

As with the processor balance formulation, storage utilization cannot
exceed the capacity of the device.

u
m

< 1 for m=1 to M

In addition, storage growth balance can be established with a

respective goal utilization, gm, and an absolute limit, for each

memory as follows:

where

M-1

Minimize (ui-gi) (u. -g.)

i=1 j=i+1

um < km for m=1 to M.

As with the processor utilization, the solution technique

defined in Section 3.2 for storage utilization is based on a heuristic

driven by the most--..ised and least used memory allocations with respect to

input goals.

3.1.4 Development Cost

Software development costs are a function of task complexity and

programming support tools available. In particular, the heterogeneous

multiprocessor system adds another development cost concern, i.e.,

coding of a task to perform on more than one processor type. A common

program source language significantly reduces duplicated coding efforts.

Thus, the development cost for a given software task, t, in the model may

be stated as:

D
t

=
p

d
tp

d

one-time developmentd
tp

x
tp

x resource manager development
tp

duplicate utilization.
tp

y
tp

I

P=I

+

-

where

y
tp

= 0 for p=1

= max liptk x . for i = 1 to p-11 for p>1
(

26 24

www.manaraa.com

where -Xipt = 1, if an identical source language is

available on processor i and p (i p) for
task t

= a technology-specified constant if differ-
ent languages are to be used (i Op)

= 0, if i = p.

If the code already exists, then d
tp

=O.

Note that the multiplicative factor for determining y
to.

can be stated as
an equivalent series of linear constraints because of the zero-one vari-
able x

to
(task t is either assigned to processor p or it is not). These

(p-1) constraints are enumerated as follows for a given task t on proces-
sor p (for p > 1).

Xlpt xtl Ytp
5 0

X2pt xt2 Ytp 0

X(p-1)pt xt(p-1) -Ytp CI'

With this set of constraints, minimizing y in the achievement function
ensures that yt will assume the approprialie maximum as defined in the
original definition.

as:

The goal objective for software development cost is now stated

Minimize 22 D
t

.

t=1

This is basically a problem of reducing development cost. The design
attempted to reduce development cost (Section 3.2) to be less than a user
supplied value, V, where V represents a ballpark estimate for the total
software development. The unit used may be man-years or dollars, depend-
ing on units established for the technology data base (described in
Section 4.2), which will be used to translate the task t instruction mix
(Section 4.2) to its one-time development cost (d

tp
) for processor p.

25

27

www.manaraa.com

The common language coefficient, ki is also a function of the tech
nologyprocessorrelated data (Sedion 4.2) and the language factor

selected for the task.

3.1.5 RealTime Task Resource Requirements

The major constraint areas interact with the objective priority
evaluations to further specify acceptable partitioning attributes. As a

minimum, the following constraints apply to basic task resource require

ments and processor accountability:

(a) Each task, t, must be assigned to at least one processor.
This implies T constraints of the following:

P

727.2 xtp> 1 for t=1 to T.
p=1

(b) If more than one processor is permitted to perform the same
task, a resource management overhead will be allocated to
task t processors via the processor utilization objective
of Section 3.1.2. However, to ensure that x

tp
is properly

coupled with e , the following constraint must be applied:et

e
tp > 0.

tp N
t

In addition, constraints must address task iteration rate and task ser

vice times to ensure that realtime task timing requirements are met:

(a) Given that task t must be executed N
t

times during the
problem, time period, T, the task iteration rate constraint

is:

e = Nt.

F'1 tP t

(b) If overlap of task t execution is not permitted (i.e., t

cannot be executing on more than one processor at a time),

the following constraint applies:

P

:E:
(c

tp
+ r

tp
) e

tp 5-
minimum (T, N

t
*S

t
)

p=1

26

www.manaraa.com

where S
t

is the maximum time limit for one execution of task
t.

Note that if

c
tp

+ r
tp

> S
t

then e can be automatically assigned a zero value and
delete&Pfrom consideration.

Task data dependencies must also be satisfied. These constraints
include:

(a) All data blocks associated with task input must be availa-
ble to the processor(s) that are permitted to perform the
task. Thus, for input block iti' the following holds:

M
-x

tp
+ a

mp
s. 0

Mk
tl

m=1

for i=1 to I
t

, t=1 to T, p=1 to P.

(b) All data blocks associated with task t's output must reside
in memory storage m, which can be updated (changed) by any
of task t's processor(s) p. If x

tp
satisfies

x
tp

+ x
tp

= 1

then for a given task output, block b=
(ito'

the following
holds:

x
tp

+ MTE
tp

+ w
mp

s
mb

- h
b

1

m=1

for t=1 to T, o=1 to Ot, p=1 to P. hb represents the number
of different memories that have duplicate copies of block
b; thus, this constraint requires all duplicate blocks to
be updated (see next constraint set).

(c) Any duplicate data blocks must be held to a minimum; there-
fore hb may be thought of as a penalty to be added as an
additional objective function with the following additional
constraint:

27

29

www.manaraa.com

h > 1 (at least 1 block is in memory)

and

M

smb hb °

m=1

for b = 1 co B.

(d) Input timing must properly account for the number of task t

executions on processor p (e
tp

) for each task input block,

ti'
i=1 to It:

M
e
tp

21: a
ra

. = 0
pt].

ta=1

p
and

amp
s

amti
0 for m=1 to M

ti
N
t

are used to ensure that ti is available on memory m.

(e) Output timing must account for the number of task t execu-
tions on processor p (e

tp
) for each task output block, 0

to
,

o=1 to
t

:

e -w
Mt

(1 s
tp mpto mo

to

and

S 0

Wra ma
7mpto

0 for m=1 to M
p

to
N
t

are used with a corresponding achievement function that

minimizes w
mpto

to ensure that-all duplicate blocks of 0

are updated.

30
28

www.manaraa.com

3.1.6 Performance Simulation Feedback

Sections 3.1.2 through 3.1.5 comprise the fundamental model
objectives and constraints that must be set in terms of a valid static
allocation of tasks. Performance bottlenecks detected by the simulation

mode being developed under separate contract (No. F33615-79-C-0003)
will add additional constraints and/or modify coefficients. In particu-

lar, the data transfer objective coefficients for given interfaces
between a memory and a processor may be readjusted to penalize use of
certain processors for a given task and/or memories for certain data
block allocations.

A stronger set of timing constraints may be required for depend-

ent software task threads. A task thread, Fk, may be defined as a group

of serially dependent tasks with the following notation:

Fk Ifkl' .." fkGic

where indexes one of the T tasks. In general, task f
kg

must have

executeeC
fkg

percent before task Fk
+1

can be enabled. Thus, the tasks

defined as a thread are not permitten to run simultaneously in parallel
processors. This constraint may be written for each thread k as follows:

P

EE f C
tp

c + rtp) e
tp

+ R
tp

x
tp

) 5 minimum {T, T
k
}

tCFk p=1

for k=1 to K, and T
k

represents feedback timing for thread K. A further

assumption is that if task t is an element of a software thread, F1,, then

task t may not be an independent task or an element of anothel task

thread. If a task is required in more than one way, it can be defined as

a group of different tasks for partitioning purposes.

In general, these threads represent critical system task path
flow bottlenecks as determined by the performance simulation of a given

partition allocation. The algorithm introduces new or revised con-
straints until one of the following conditions exists:

(a) Satisfactory solution found

(b) Infeasible condition identified

(c) Maximum feedback iterations performed.

The current solution state is to be saved and/or printed for future
evaluation as requested by the user evaluator.

29 31

www.manaraa.com

3.2 ALGORITHM DESIGN HIGHLIGHTS

There are many mathematical program techniques, including both
linear and nonlinear optimizers and h-mristics. The partitioning model
requires integer solution values that immediately classify it as a non-
linear global optimization problem even though the model itself consists
of linearly expressed objectives and constraints. In addition, two of
the three achievement priority functions (i.e., balance the processor
load and balance memory storage) are nonlinear in their formulation of
minimizing the sums of absolute differences. These nonlinear goals
combined with the goal program matrix, which is sized according to the
parameters represented in Table 1, would be a challenge to both sizing
and timing of commercially available mixed integer linear program models
with a single achievement priority.

To determine the viable design alternatives, a study of goal
programming was made, including several military goal program applica-
tions that have been implemented. Applications included weapon system
slice optimization in relation to planning force analysis and a balanced
budget allocation model for mixed project/agency funding. Both of these

applications interface goal programming models with other analysis tools
(such as simulation, input/output analysis, and regression analysis) to
provide a set of automated operational evaluation tools. These

additional tools provide a means to cross-check and supply detailed
model data values that are used to calibrate the goal program model. The

calibrated model is then used for selected parametric studies to

determine impact on solutions in terms of parametric margins and

solution sensitivities. Both of nese applications utilize modified
versions of the classical textbook " multiphase goal program computer
algorithms. A major drawback to these codes is their susceptibility to
numeric roundoff error propagation for problems involving more than 50

to several hundred variables and constraints. In addition to the

numerical roundoff errors, the multiphase codes studied do not use
dynamic core memory management. This requires the entire matrix and
associated bookkeeping variables reside in main memory.

In lieu of funding the development for a mixed integer goal
program optimizer for larger problems, an alternative algorithm is the

sequential use of a good commercially available linear program optimizer
interfaced via a goal program driver that introduces each achievement
one at a time. This permits continuous solution problems with up to
16,000 rows to be handled, given adequate dynamic disc storage. Current

state-of-the-art integer solutions are restricted to several hundred

Ignizio, James P., Goal Programming and Extensions, D. C. Heath and
Company, Lexington, Massachusetts, 1976

2 Lee, Sang M., Goal Programming for Decision Analysis, Auerbach Pub-
lishers, Philadelphia, Pennsylvania, 1972

32,
30

www.manaraa.com

TABLE 1. BASIC GOAL PROGRAM MATRIX SIZING

CASE CONTROL PARAMETERS RESULTANT MATRIX

T P B M II0 VARIABLES ROWS COLUMNS

1 30 2 61 3 3 2 1,330 1,747 4,824

2 30 3 61 4 3 2 2,383 3,009 8,401

3 30 3 120 4 3 3 3,038 3,608 10,224

4 30 3 120 6 3 3 4,358 4,688 13,734

5 60 4 140 6 3 3 10,351 12,271 34,893

Prob 1 5 2 12 3 3 3 264 348 960

Prob 2 7 4 21 6 3 3 1,250 1,642 4,534

Variables = B + P + M + 1 + MB + 3TP + TPM (I + 0)

Rows = B + P +M + 1 + 21-. + 2TP (1 + I + 0) + TPM (I + 0)

Columns = Variables + 2 (ROWS)

www.manaraa.com

variables. The sequential use of a linear program optimizer is the
approach recommended for further study in addressing a subset of the
software partitioning algorithm as designed in this study. The design
has remained independent of a specific computer optimizer code.

Even with the sequential mixed integer linear program technique,
the sizing of the partitioning problem (given in Table 1) is prone to
challenge the best optimizers without some careful matrix selection gen-
eration techniques. There are two major areas of concern:

1. The time consumed in determination of an initial feasible
solution

2. Excessive iteration thrashing to determine "optimal" integer

solutions.

The study of goal programming included a survey of heuristic techniques
that can facilitate the search for improved solutions given an initial
feasible solution. In practice, application-customed heuristic algo-
rithms have provided an efficient means for handling and reducing the
large solution space of alternatives to be searched)

In the case of flight trainer candidate designs, the designers
have an implied partition which can be used as the initial solution. The

partitioning problem then becomes one of "Does a better solution exist
with respect to load balance, memory balance, and development cost?" The
incorporation of an initial solution step has been recommended as an
implementation step requiring further study for obtaining an expanded

evaluation capability. The currant algorithm design assumes that an
initial solution is supplied and proceeds in a heuristic manner to seek a

better solution.

To achieve a well-defined user evaluator interface of partition-
ing input data, a customed heuristic goal program driver, and solution
summary capabilities, the Partitioning Algorithm for Software Systems
(PASS) has been designed emphasizing the four major processes denoted in

Figure 2:

1. User input interface and processing referenced as PASS1

2. Basic partitioning algorithm referenced as PASS2

3. Augmented partitioning algorithm (PASS3) to handle dynamic
performance prediction feedback

Ignizio, James P., "Solving Large Scale Problems: A Venture into a New
Dimension," Pennsylvania State University, 1978

34 32

www.manaraa.com

DEALS

A Evaluate and

Partition Soft-

ware System for

Candidate I

ARead,edit.and
Initialize Controt

parameters and

tabtes based on

user input files

A Identify candi-

date software

partition and

account for

static resource
requirements

according to
requested

priorities

AInitial par-
tition not

found

A Interface with

performance

simulator

CSTAR T

ilk
PASS 1

2411512

AEvaLuate both
static and

dynamic measures
according to input

objectives to
3000 determine If
PASS 11 'better" partition

exists

PASS 3D T

F

LASS 2F)T X

(I

DEALS-6(I,j)

/
DEALS-10(I,j)

L

4000

PASS 4

A PASS3

found

another

partition

ASummarixe Candi-
date Partition

Measures

Figure 2. Major partitioning algorithm steps.

www.manaraa.com

4. Solution summary reports (PASS4) of a given partition for
candidate design i.

Prior to describing each of these steps, the overall design flow of the
steps and their interfaces is presented.

The major external interface (exclusive of an optimizer) with
PASS include the evaluation user and a multiprocessor configuration per-
formance predictor simulator. The user interface considerations for
actual implementation are expanded in Section 4, with emphasis on

incorporating a modular, automated data repository to facilitate input
preparation of PASS1 and maintenance of current flight trainer design
parameters with respect to given partitions (PASS4). The performance
predictor interface is designed to interact with the Computational Per-
formance Predictor Simulator (CPPS) being specified and designed under
separate contract. The iterative process of determining a new alloca-
tion (PASS3) based on performance prediction feedback is performed until
one of the following conditions is reached: (a) satisfactory partition
is found, (b) design bottleneck is identified, (c) maximum iterations
have been reached.

3.2.1 but Processing Step PASS1

The mathematical statement of Section 3.1 contains software,
hardware, and combined software/hardware parameters. The design efforts
of this study have emphasized the separation of any combined parameters
into basic hardware and software components with the aid of technology
data base tables and computational formulas necessary to generate the
given "combined" parameter. Thus, all task/processor and data/memory
parameters are derived from independent software and hardware design
configuration inputs (see Section 4.2).

The specific inputs are defined in Appendix A. Figure 3 deline-
ates the major design process flow for user input editing and computa-
tional sequences to properly set up for the actual partitioning steps
that follow. The design demonstration (Appendix C) provides the

detailed computations to map the user input into the internal partition-
ing algorithm control and lookup tables listed in Table 2. Appendix B
provides representative report formats for the user input echo, which
consists of the reports listed in Table 3.

3.2.2 Basic Partitioning Algorithm (PASS2)

This step provides the basic controls and logic for interfacing
with the three user-ordered heuristics to determine whether an improved
partitioning solution can be found. As mentioned in the introductory
remarks on design in Section 3.2, the basic assumption is that an initial
feasible (with respect to real-time constraints) partition is supplied.
The resultant basic partitioning algorithm flow is denoted in Figure 4 as

36
34

www.manaraa.com

CEiifiT.)

I-.
1100
PA1100

INITIALISATION
AND RUN

IDENTIFICATION

1200

PAI200
PROCESS
INTERFACE

REOUIREMENTS

1300

PA1300

PROCESS
SW BLOCKS

AND TASK
DEFINITIONS

A RESET ERROR
FLAG ZERO
CONTROL COUNTERS

READ EVALUATION ID'S
OPEN & VERIFY TECH.
D.B. FETCH DATE

A TIME
BUILD PRINTER/
DISPLAY HEADINGS

&VERIFY PARAMETER
CONSISTENCY

BUILD REQUIRED
DEVICE TABLE

COUNT DEVICES
ENTERED

A COUNT & VERIFY

DATA BLOCK
DEFINITIONS

COUNT & VERIFY

TASK DEFINITIONS
ESTABLISH BLOCK/
TASK XREF CONTROLS

1400

PA1400

PROCESS

CANDIDATE
CONFIGURATION

DEFINITION

1500

PA1500
PROCESS
EVALUATION

CRITERIA

1600

PA1600

SET-UP
PARTITIONING

LOOK-UP TABLES

EXPAND REQUIRED
DEVICE TO TABLE

ESTABLISH
CANDIDATE CON-

FIGURATION XREF

ASET PREEMPTIVE
PRIORITIES

IDENTIFY LOAD

CONSTRAINTS

BUILD ALLOCATION
CONTROL

RESTRICTIONS

AGENERATE COEFFICIENTS
-TASK/PROCESOR

- BLOCK/MEMORY

- COMMUNICATION

-BASIC SHING

R,..TURND
1000 711

PASS1

Figure 3. User input process flow.

www.manaraa.com

TABLE 2. INTERNAL PARTITIONING ALGORITHM CONTROL AND LOOK-UP
TABLES ESTABLISHED BY PASS 1

GRP TABLE TITLE

1 Limits, Constants, and Codes

2 Current Problem Sizing Controls

3 Priority Controls

4 Current Processor List

5 Current Memory List

6 Current 'Ammunication Link List

7 Current Internal Device List

8 Task/Processor Allocation and Restrictions

9 Memory/Processor Allocation and Restrictions

10 Block/Memory Allocation, Restrictions, and
Coefficients

11 Master Block List

12 Master Task List

38

36

www.manaraa.com

TABLE 3. USER INPUT ECHO REPOR; THAT ARE SPECIFIED IN APPENDIX B

FORMAT* REPORT TITLE

1 Standard Run identification

2 Hardware Component Summary

3 Data Block Summary

4 Task Summary

5 Baseline Load Summary

6 Evaluation Options/Restrictions

7 Evaluation Priorities

8 Basic Partitioning Problem Size

* Format reference to Appendix B

37 39

www.manaraa.com

Crt

2100
PA2100
VERIFY
INITIAL
SOLUTION
FEASABILITY

220P
PA2200
SET UP
INITIAL
HEURISTIC
CONTROL/STATUS
TABLES

ACOrIPUTE
-REAL-TIME
CONSTRAINT
LEVELS
-INITIAL
ACHIEVEMENT
LEVELS

ArLAGs OUT-OF
;OLERANCE LEVELS

(POSSIBLE J
F

POSSIBLE
T

ARANK CONTRIBUTING
VARIABLES WITH
RESPECT TO INDIV-
DUAL GOALS
- PROCESSORS
- MEMORIES
-TASKS

C'
DO (L 1 to G)

'T'

2300
PA23BB
(L)

F

'F'

PERFORM
GOAL L

IMPROVEMENT
POSSIBLE

F

CETURN

Figure 4. Basic partitioning algorithm control flow.

AJ.-

R2000
PASS2_______

www.manaraa.com

being comprised of initial solution verification, heuristic control
table setup, and user-specified, priority-ordered heuristic executions.

There are three basic heuristic algorithms corresponding to the
three objectives or achievement functions: processor utilization
(LOADBL), memory utilization (MEMBAL), and development cost (RDCOST).
Figure 5 denotes the major selection branch as being a function of the
user-specified priority execution order GOAL (g), where g is the current
priority level being executed. Prior to invoking the appropriate heu-
ristic, a test is made to determine whether the basic priority goal level
has already been achieved. If so, a return is made to proceed to the
next priority level.

The major features incorporated, in the design permit ranking of
the current partition solution variables with respect to impact on the
given priority under consideration. The following ranking definitions
are utilized for each of the respective heuristics:

1. For the load balance heuristic, processor p's utilization,
U , is subtracted from its goal, G , to define U' = G U .

TRe resultant U' array is then ranlied from high to lowPvaluRs
(i.e., those below their goal- to those above their respec-
tive goal in order of difference magnitude). The resultant
ranked array is then used to determine whether the load is
currently in balance, i.e., (U'l - U', GTOLPU) with respect
to a user-supplied tolerance (GTOLPU) Tor processor utiliza-

tion. The object is to offload some of the tasks from the
heavily utilized processors to the lighter loaded processors
to obtain a better balance, as denoted in Figure 6.

2. For the memory balance heuristic, the allocated memory, um,
is subtracted from its goal allocation, g , to define u'

m
=

g -u . The resultant array, u' , is Then ranked (in a
m m
similar fashion as processor uthization) to determine

whether the current memory allocation is in balance accord-
ing to the user-supplied goal (u'

1
-u'M GTOLMU). The

objective (Figure 7) is to reallocate some of the blocks
from the over-allocated memories to the under-allocated
memories to obtain a better balance.

3. The development cost is a minimization problem of individual
task development cost. Thus, the tasks are ranked from most
expensive to least expensive. The ranked cost array can
then be systematically processed (Figure 8) to determine
whether a more cost-effective solution is possible (i.e.,
can this task be implemented on another processor in the
candidate configuration of less development expense and
still meet real-time constraints?). It should be noted that

this priority is only applicable to a heterogeneous set of
candidate processors.

(1 4139

www.manaraa.com

PROCESSOR UT I L ZAT ION

i310---
LOADCK
(1,NP)

,TD_

1
- MEMCK

(1 NM_.._. . _

I NVAL I 0
())- -------t

100
ERROR

(42)

MEMORY
z

241M

{1-2LnglE)BL11 [L2114E!13AL -11

)

ALLOCAT ION

A OEVELOPMENT
COST

-11_2C5OSILSTCK CHECK
A TOLERANCE

1LRDCOST II_ J

A HEURISTIC

Figure 5. Priority heuristic selection process.

www.manaraa.com

(Pi!RYD

6 SOME PROCESSORS
ARE ABOVE 1 IM I 1

L' :_:271
1. /. PROCESS EACH ProcEssoR

J ABOVE ABSOLUTE LIMIT

1)41.r...--111:10 I for l
41 to OPLT Ji.Ne-mrciersc.

.212.___________4(iiaiiialiiiirl=tiii 1

A RE RANK IL)

meoctssolts
WHICH ARE
LESS THAN
OR MIIIAL GOAL

c.

L;icm:D.corcni. .JI)
II

2721-

11

(gT/Li170::)-!.-

i I

I-I 1!43 1- 11

-P1 :PIRO- R-

f1LDAODL II

{)
Arixen
ALLOCATION
NA! OVERLOADED
PROCESSOR J

1B or
4 L. .J11 I-

' C.
1:1

succrasrui
REALLOCAT ION

6 FOR EACH
PROCESSOR K
BELOW ITS
GUAL LEVEL
SEE If IT
CAN PERFORM
SUM Of
PRUCE SSOR J
(ASKS

UNSUCCE BSFIll

ItR0
144 1

11

Figure 6. Processor load balance heuristic.

41
4 3

www.manaraa.com

A RIRANK INTIM

UTILIZATION

ARRAY

IRANKO

ICOPCD COPC01,1,101

ourii. i1l:r3

A tat ur FIR

BALANCE ALCOMINII

M1111 HOW! TO

USER OPICITIED

COALS

'C' 01 IL'

by -II
1J le MI

.r.
I1),CDPCD1,
IIANKO

I

IJJKL

[iEilkoiltr]

(6.Riqr;a1,EirEaril

(FACTOR

I11

SNO

lASK3

(f_igici)

CHECK

FOR

CANDIDATE

IA/KO

[T

AM Loy
On MIK

ROM
II ,K , 1.JT 1,11.111.1

ceo49.19.p

coral i
E0, 1lD)

i

ARBOR

(471

1"' ft
CT: -To

Ifl itirtiffilr
ILOICOPC011 IK I

OPUROLICDIC0(11.01COPC0111111 1

ACNICK 10 NC ir GOAL

IN MKT FOR IINAININO

KROC101011 OHM

5ALANCID

G71.1glati JICIPS D- 1... r _4{17iii;iiiiii"

Ili INT

.--Fcarri rut
10 IMPIOVI

PRIM 04
1461

4
40

I'

1111101

iiii;ii;nifiii)
IMAM

It

QIITJAID

A 111161

11AX1t1111

I II RAI I OM

NAVE 1111

£111011110

A rErroon

IALANCC

CALCULATION

LL4?

11.101.11MMOI11MM111MMIMM

Figure 6. Processor load balance heuristic (Concluded),

www.manaraa.com

CPIPIVLD

(:EFIT! L

ISocf SO EACH MEMORY

-gar

501IE MEMORIER
ARC ADDY! ALLOCATION
LIMIT

r

1

:MARK ME MoR it S

WHICH ARE LE SS
THAN OR [OVAL OVAL

I RANKV
1COMCO. cOMCD I ,
I. J! 1

r25 .1=
_

J ABOVE AOSOLUTE LIMIT

dr.:4141111i7;ETIT---]

ir.i1; ant. 'or A nAIC
L II T

or
T CANDIDATE

(1?Et BLOCK!, TO
HE NNNNN -
VEERED

PIROO 1.1

1561

I

D011a: 11 rC

A VON [ACM MEMORY
KM OKLOw 115
COAL LEVEL
SEE Jr IT CAN OE
ALLOCATED ROME OT
J11 BLOCK!,

ASUCCESKTUL
AT ION

11_7417.:

liff

A unsucceeerut.

Figure 7. Memory allocation balance heuristic.

43

46

www.manaraa.com

ICONCD,COMCD1,1,NMI

MONO

NrrollaMnci! i

13414MNMCIL

1/121

611ERAINt ALL MOONIER

OY MUNRO COAL
DEVIATION

AUPDATt NUMBER 01

MONIES STILL
AODVE WHAM
LIMIT

Astr rol MEMORY

BALANCE ALCOVITI

WITN NEEPECT TO

MEI SPECITIED

COALS

[IPT;EEREEITIF

110CDMCDIIIRI

TINUNOLCOMMILDI-CUNCO111111

ACME TO IlEt If SOAL II MT 105 RENAININO MENOPTEE

(3011Elq Taiiii73
mania-]

11v

PERRON 4----
1821

ACONTINUt

ITERATIONS

UNTIL MAX

ITERATIONS

A

le
DO ilor L

'13 le 111f11

by .11

riii;t611hi1117-1

Lconco!vii

A 1.-r t
tow 1.40 , ,-,111"

lilt AI MO 1..

-O

ACNECK

ION

CANDI-

DATE

LOCKS

PAMJER

IJM..1,

IJC,IMLIST1

101

faniciiiikli) 1

A 1.

1/MD
ICONCO.COMC01,

13.111

PERRON

1931

Figure 7. Memory allocation balance heuristic (Sheet 2 of 2)

.MII011==l

www.manaraa.com

(ENTRY

1

DO (for L

Ml to NT)
A

'C'

TADCI(L) J AFETCH TASK
INDEX

F
--1LTADCP(t)

TADCS(t) ..LE.

TANG(t)

PA2530

PROCESS

TASK

CHANGE

LIST

ClRETURN

.GT. 1)

2522

PA2522

HETEROGENEOUS?

2521

PA252I

REDUCED

COST

POSSIBLE,
'T'

2525

PA2525

INSERT TASK

CHANGE LIST

2524

PA2523

HOMOGENEOUS

POSSIBLE?
'T'

A IS PREDICTED

DEVELOPMENT

COST LESS THAN

USER SUPPLIED

COST?

A IS MORE THAN

ONE PROCESSOR

ASSIGNED FOR

THIS TASK?

P

' T '

2523

PA2523

REDUUCED S

POSSIBLE?

'T'

2520

RDCOST

Figure 8. Reduce development cost heuristic.

40

www.manaraa.com

For each of the heuristics, checks are incorporated to ensure
that real-time limitations are not violated by any subsequent new
"improved" solutions found by the respective heuristic. Design emphasis

was placed on the order for incorporating these checks within the heu-
ristic procedure to avoid excessive calculations when easily determined
restrictions would prohibit exploring a given tradeoff. For example,

when attempting to reallocate a task to another processor, only those
processors that may perform the task are considered. To solve some of
the more complex interrelated real-time constraints, a linear program
statement might be studied to determine whether effective utilization of
an optimizer would be feasible for performing the given tradeoff. The

current algorithm incorporates a specific check of constraints as formu-
lated in Sections 3.1.5 and 3.1.6.

The heuristic driver continues at each priority level until it
has exhausted its systematic exchange tradeoff search for an improved
measurement. The three priority levels are executed in the order as
specified by the user evaluation priority inputs of PASS1. The basic
computational and logical sequence flows for each of the three priority
levels are denoted in Figures 6, 7, and 8, respectively.

3.2.3 Augmented Partitioning Algorithm (PASS3)

This step is an expansion of the PASS2 processes with emphasis on
resolving identified performance bottlenecks of the following types:

1. Cycle or thread timing is not sufficient for real-time
system response.

2. Specific candidate component (i.e., processor, memory, com-
munication link) utilization is unacceptable.

The basic process decision flow is depicted in Figure 9.

Recognizing that manual user evaluation insight may help expe-
dite the search for an improved partitioning, process PA 3100 facili-
tates the option that the current allocation can be manually modified.
Once any modifications have been processed, the performance data are
processed via PA 3200 to readjust coefficients and to set up additional
constraint generation controls. The new constraints are then con-
structed and their basic impact on the current partition is assessed in
terms of solution feasibility. Each performance bottleneck is processed
individually, in a predetermined order of criticality during this pro-
cess (PA 3300).

If a cycle or thread is the bottleneck, then the respective re-
source management and data communication links are examined to determine
the major bottleneck within the thread or cycle. Penalty coefficient

4 a

www.manaraa.com

[

ENTRY D

3100
PA3100

/
3200
PA321210

3300
PA3300

(RE TURteD

4\ PROCESS PARTAIT ION
FEEDBACK RUN REQUEST

A ADJUST BASIC
PARAMETERS

A AUGMENTED HEURISTIC
DRIVER

113000-
PASS3 II

Figure 9. Augmented partitioning algorithm flow.

Jorn

www.manaraa.com

adjustments are made to the processor utilization equation. An alter-

nate partition is sought that satisfies the end-to-end time requirement

of the given cycle or thread under these more stringent constraints.

If a component is above its allotted utilization, a check as to

processor or memory balance bottleneck is made. If it is a processor,

the processor heuristic is used to offload the offending processor. If

it is a memory problem, an attempt is made to find a faster access memory

or add a duplicate block if shared memory access is the bottleneck.

As the processing of bottlenecks is performed, the augmented

heuristic driver invokes PASS2 partitioning modules interspersed with
additional checks for maintaining the appropriate thread and/or cycle

constraints. If a new partition is found to be acceptable, it is saved
for feedback to the performance simulation and further manual analysis.

If not, the problems are identified for user evaluation. Appendix D

contains the detailed design flows necessary to fully enumerate the

algorithm. Additional changes are anticipated as the details of the
performance simulator design are enumerated under Contract No. F33615-

79 -C -0003.

3.2.4 Solution Summary Reports (PASS4)

The report generation features of PASS4 are designed to provide
printed summaries of a partition found by either PASS2 or PASS3 for a

given candidate configuration. The specific formats chosen present the

partition solution from five complementary, but different, aspects,
including (a) partitioning priority level measurements, (b) task alloca-

tions, (c) data block allocations, (d) processor allocations, (e) memory

allocations.

Figure 10 reflects a modular design flow based on user requests
for any of the reports for a given partition j of candidate configuration

i. This particular report generation capability should be implemented
for access from batch job control, special user codes, as well as inter-
active displays to obtain maximum evaluation flexibility to automati-
cally recall and/or print alternative partition solutions for a given

candidate.

Specific output report formats are presented in Appendix B. The

design demonstration, Appendix C, has sample output reports for user

reference.

3.3 FEASIBILITY DEMONSTRATION

In deriving a meaningful. yet simple, sample problem, specific

preliminary design material was obtained from Williams AFB with regard
to an ongoing expanded design for the Advanced Simulation for Pilot

Training multiple processor visual computational support subsystem. The

5,18

www.manaraa.com

for Kel TO NPAR

lakTURND

.c.

1

DO

(for

to NPAR)

AGENERATE REQUESTED REPORTS ERRF

for position J of candidate I

PARRfIWPGOALS'
PARR(2)TASKS'
PARR(3)'DArAl

PARR(4)3'PROC'

PARR(5)11.:MEMORY1
%j

SETUP

IN

PREDEFINED

ORDER

Kai

AI
200

'T' FIND

(PARR(K),MRR,

MDR,I1)

INVALID

F---
01(11iipnc[ion

11 PE(RR9°)R4

DATA

BLOCK

ALLOCA-

TION

PROCESSOR, MEMORY--

ALLOCA- ALLOCA-

TION TION

Figure 10. Report generator design.

4000

PASS4

(i,J,ERRF)

www.manaraa.com

preliminary design material provided a realistic source of the format
for ongoing trainer computational design input. It also included a mix of
general-purpose and special-purpose processors. The information in this
memorandum provided a good base for generating a sample problem; how-
ever, the resulting sample problem required simplification of the con-
figuration described k...o permit a flexible, yet easy-to-follow, manual
demonstration problem to be obtained.

The design factors in the original problem were very restrictive
as to Central Processing Unit (CPU) task assignments and thus left very
little room for alternative partitioning. This reinforces the fact
that, in software design, tasks tend to be defined in terms of the
selected hardware configuration features to meet computational needs, as
opposed to specifying application computations and then matching tasks
to the hardware selection. For the partitioning algorithm to be applica-
ble to alternative allocations and partitions, the major feasibility
issue concerns design language and means for inputting the problem
definition from which the partitioning model is to operate. These issues
are discussed in Section 4.

For demonstration purposes, overview inputs, restrictive inputs,
and detailed inputs have been incorporated to illustrate various aspects
and paths of the partitioning process and to point out the tradeoffs in
utilization of detailed inputs versus general estimates. The complete
algorithm feasibility demonstration is incl-ied as Appendix C to this
report. The basic order is the sample problem definition, user input
sheets, user input echo summary, basic partitioning priority calcula-
tions, sample performance feedback contingencies, and solution summary
outputs.

Figures 11 through 13 illustrate the major partitioning compon-
ents as extracted and simplified from a set of Williams AFB ASPT prelimi-
nary design notes for the visual subsystem. The overall processor con-
figuration is denoted in Figure 11. The memory and external communica-
tions are illustrated in Figure 12 to include both private and shared
memory devices. It also includes processor-to-processor direct data
transfer. Figure 13 denotes the simplified task flow used for demon-
strating the input and output steps of the algorithm. The tasks of
Figure 13 may be further divided into more detailed tasks for demonstrat-
ing and testing specific features of the partitioning algorithm, once an
automated version of the algorithm is implemented.

The sample demonstration (delineated in Appendix C) permits the
definition of potential automated implementation processes for handling
real-world partitioning problems. The examples demonstrate the feasi-
bility of an automated tool. Section 4 provides recommended implementa-
tion steps for verifying and validating the partitioning tool. These
steps will require that the basic algorithm be automated to properly
evaluate and demonstrate its performance characteristics for more rea-
listic partition'Ag problems that tend to be of larger size than the

53 50

www.manaraa.com

,-----
300 MB

ENV
SEL 32/75

IF

SEL 58

r,

E10-4 SIMULATOR
SUBSYSTEM
COMPUTER

Al
SEL 32/75

31
SEL 32/75

HIM

SEL 80

4 Fi04

ri:1A1

V

CONSOLE
A

1E104

4
E10-2

SPECIAL PURPOSE COMPUTER
(SPC)

Nit

VISUAL
DISPLAYS

1-7.1 OLOBAL PARTITION EXAMPLE

I DETAIL PARTITION EXAMPLES

Figure 11. Sample problem configuration.

54

www.manaraa.com

TO MASTER

MI

E10-4

Cl
Al

HSD

BUS lA

BUS 2

BUS 1B

M2
C2

81

SHARED MEMORY

PRIVATE MEMORY

PROCESSOR

Figure 12. Sample configuration memory processor communications.

C k:

www.manaraa.com

1,1

COCKPIT LOCATION

AND ADJUST

DIRECTIONAL

LIGHT TABLE

(AOBJL

MODPLIST

DYNDATA

PAOL

MUTE

46

A01 OPTIONAL

CALCULATION

CHANNEL COSINE

MATRICES

04

CAOUT

A7-13

17-19

BLINKING LIGHT

BUILD ACTIVE

OBJECT & BUILD

MODEL PRIORITY

15

B7.13

COCKPIT B

UPDATE

14 &16

HOOD DYNAMICS

BOMBISTRAFE

IMPACT AN:

Figure 13, Application flow,

PREPARE

DYNAMIC

DATA

..11Y1111A.

VI

www.manaraa.com

manual demonstration examples. The manual examples will permit the
basic logic to be verified for a controlled, small-scale application
prior to "cranking out" large-scale partitioning problems. This will

permit an initial level of confidence to be established in the automated
version.

54

www.manaraa.com

4. MODEL IMPLEMENTATION CONSIDERATIONS

To successfully implement the software partitioning algorithm,
an up-to-date technology data base for the flight training simulator
computational devices is essential. This section delineates the data
collection process and decision steps recommended for potential automa-
tion and quality control of the algorithm defined in Section 3. This
section has been organized to go from an overview of the candidate design
evaluation environment into a detailed evaluation support data base
repository description, followed by computer selection criteria and the
recommended implementation schedule for automation of the software
partitioning evaluation algorithm.

4.1 FLIGHT TRAINING SIMULATOR EVALUATION ENVIRONMENT

Typically, the development of flight training simulator candi-
date designs for the Air Force are contracted out by the Simulation
System Program Office (ASD-024). The computational subsystem design
development is monitored and evaluated by the Deputy of Engineering
cimulation (ASD-EN). In some cases, the flight trainer development is
Directly contracted by a specific system office (such as in the case of
the F-16 trainer). Currently, the contracted organization has the pri-
mary responsibility for establishing both hardware and software require-
ments of the computational system, subject to certain Air Force guide-
lines and training capability objectives. The candidate design evolves
through an iterative refinement of documentation and algorithm enumera-
tion analysis, which typically progresses from system specification
functional flows followed by the detailed enumeration of the candidate
,,esign. Each of these levels has narrative descriptions interspersed
17ith a variety of technical charts, drawings, tables, flow diagrams,
interface definition:;, etc.; however, as denoted in Figure 14, the

volume of documentation for a training simulator quickly becomes
unwieldy unless documentation traceability and content standards are
adhered to and enforced via constructive reviews, which are geared to
detecting and correcting errors early in the development phase.

This effort has specifically addressed the software partitioning
aspects of candidate design evaluation. The three major outputs of the
partitioning algorithm are measures of the processing load balance,
memory utilization, and estimated development implementation cost based
on given timing and sizing input requirements of the respective tasks and
data load for a given candidate configuration. For effective use of the
software partitioning algorithm, the underlying mathematical model of
Section 3.1 must be understood in terms of the processor utilization,
memory u_Uization, and development cost formulations, which are the
primary outputs.

55

www.manaraa.com

TRAINER SYSTEM SPEC

o POSITIONS
CONFIGURATIONS
COORDINATION CONTROLS

SUBSYSTEM INTERFACE SPECs

o COMMUNICATION PRIORITIES
DATA FREQUENCY AND FORMATS

FUNCTIONAL DESCRIPTIONS

SUBSYSTEM DESIGN DOCUMENTS

CREW POSITION AIRCRAFT INSTRUMENTATION

CONTROLS SWITCHES ELECTRONICS

HYDRAULICS WEAPON SYSTEMS DISPLAYS

AUDIO VISUAL MOTION FORCE NAVIGATION

TERRAIN INSTRUCTIONAL OPERATIONS SCORING

COMPUTATIONAL . . .

Figure 14. Hierarchy of flight trainer documents, which relates to candi-
date design evaluation, can quickly become unwieldy if content
and traceability standards are not adhered to or enforced.
The simulator computational subsystem interfaces with and

coordinates a large number of the trainer simulator sub-

systems.

56
GO

www.manaraa.com

To obtain reliable outputs, a consistent, systematic procedure
needs to be established with appropriate configuration management and
quality assurance provisions and controls. The major implementation
consideration for such a procedure is the establishment of a consistent
data repository for pertinent flight trainer computational design data.
No central repository for Air Force flight trainer computational designs
currently exists, although various organizations (such as ASD-EN) do
have their own evaluation data repositories.

During the course of this contract, it was learned that the Naval
Training Equipment Center (NTEC) in Orlando, Florida, does have a

repository of all documentation associated with Navy training devices to
include the computational subsystem. NTEC recently modified the
required Data Item Descriptions related to the computational subsystem
to be an integral part of training device development in conjunction with
a proposed Appendix A to the trainer specification, MIL-STD-1644,
entitled "Trainer Software Design, Control, Production Testing and
Acceptance Procedures and Requirements." This proposed specification
incorporates the top-down structured design approach with minimum stand-
ards that are required of each milestone document and its associated
review content, error detection/correction actions, and milestone com-
pleteness determination. The procedures are in basic agreement with the
development cycle presented in Section 2.1. This set of documents per-
mits a consistent repository to be established and maintained for cur-
rent reference and analysis input for new development considerations.
Unfortunately, it is still primarily a manual information storage and
retrieval system when it comes to accessing data pertinent to software
partitioning.

The factors identified in Section 3.1 that influence optimal
software allocation (such as: data block, task, processor, and memory
descriptions) remain the same regardless of the system assumptions or
presentation format. Indeed, these factors (Table 4) must typically be
extracted from more than one document to obtain the complete set of input
and constraint parameters defined in the mathematical statement of
Section 3.1. To assist in the review of documents with respect to
software partitioning of the computational subsystem, the supporting
data base parameters have been segmented into five major areas with
respect to flight trainer simulator:

1. Trainer Computational Interface Requirements
2. Baseline Application Components
3. Candidate Hardware Configuration Components
4. Technology Data Base
5. Evaluation Criteria/Constraints and Partitioning Load.

Figure 15 reflects the interactive nature of these data base areas with
respect to technology capabilities and the development cycle up through
the completion of the design but prior to actual implementation and test-
ing. The upper area relates to milestone documents of the training

57

61

www.manaraa.com

TABLE 4. DEVELOPMENT DOCUMENTS AND THEIR
RELATIONSHIP TO THE PARTITIONING
ALGORITHM FOR SOFTWARE SYSTEMS

DOCUMENT(S) INPUT AREA

Computational Subsystem External Device Interfaces
Interface Specification

Required Components

Functional I/O Map

Communication Rules
and Priorities

Baseline Load(s)

Software Design and Data Block Descriptions
Data Base Specifications

Task Descriptions

Task Threads

Baseline Load(s) Tasking

Hardware Configuration Processors .

Design Specifications
Memories

Interfaces (Internal and
External)

Communication Rules

62
58

www.manaraa.com

SPECIFIC TRAINER DEVELOPMENT

0
T
H
E
R

B

E
M
S

COMPUTATIONAL
INTERFACE &
FUNCTIONAL
REQUIREMENTS

TRAINING,
INSTRUCTOR,
& OPERATION
DEVICE
INTERFACES

CANDIDATE
SOFTWARE &
HARDWARE
SPECIFIC'ATIONS

COMPUTATIONAL
CANDIDATE

DESIGN
PARTITIONING &

EVALUATION

MEMORIES,
PROCESSORS,
& COMMUNICATION
DEVICE
INTERFACES

C
O
M

U
T
A

I
0

A

S

S

S

E
M

TECHNOLOGY CAPABILITY

Figure 15. Computational design evaluation must relate a specific design
in terms of current technology capabilities for both external
communications and internal computational subsystem details.

59

www.manaraa.com

computational interface requirements, software design, and hardware
design respectively. The lower half represents the technology data
base, which permits an abbreviated means for entering the design details
on which the partitioning algorithm is to operate. The left half relates

the devices to be serviced by the computational subsystem, and the right
half reflects the internal computational subsystem structure organiza-
tion and devices.

Although the data are extracted from independent sources, it re-
quires interactive coordination and configuration controls to ensure
that accurate, up-to-date, best estimates are utilized for the evalua-
tion at hand. The evaluation criteria and constraint inputs facilitate
configuration controls, parametric analysis, and partitioning flexi-
bility with respect to prohibited and/or preassigned allocations in

addition to initial allocations. The details of this segmented data base

are now described in terms of implementation consideration'.

4.2 DATA BASE MANAGEMENT

Two major recommendations are being made to facilitate orderly
consolidation of the storage and retrieval for each of the five data base
areas that provide the driving source of information for the partition-

ing algorithm and candidate design evaluation process. These recom-
mendations are as follows:

1. The addition of a standard set of candidate design specifi-
cation tables that address the software and hardware designs
as independent sets of parametric measures.

2. The establishment of a design evaluation data base reposi-
tory utilizing an interactive file management system under
the configuration control of ASD/ENETC.

This subsection supplies key factors that should be evaluated and modi-
fied as necessary to facilitate an orderly transition to an automated
algorithm implementation as presented in Section 4.4. Proper utiliza-
tion will require a training indoctrination as to the potential benefits
to both the flight trainer developer and evaluator communities. Before

the recommended input forms are described, several master data struc-
tures are delineated that have a direct influence on validity of data
entries and provide the key to independent software and hardware design
characterization.

4.2.1 Master Data Structures

These master structures include (a) data block characterization;
(b) memory characterization, (c) task characterization, and (d) proces-
sor characterization.

www.manaraa.com

Combinations of these structures are incorporated into the

recommended forms for each of the five data base input areas presented in

Appendix A.

4.2.1.1 Data Block Characterization - Data characteristics such

as source, volume, frequency, content, and destination are the real-time
drivers of the computational subsystem from both external device and in-

ternal task communications, command, and-control. Table 5 denotes at-

tributes required by the software partitioning algorithm for each data
block that is acted upon or created by the computational subsystems being

partitioned. Note that these attributes do not tie the data block to a

specific storage device. Only external system blocks are identified as
being related to a given type of peripheral interface; for example, a
cockpit control setting input buffer black has a definite source device
that must be monitored at a predetermined sample rate. On the other
hand, the data to be computed by one task and used by a sequentially

dependent task are described in terms of minimum storage device require-

ments for their storage and retrieval utilization. These master block

definitions are then referenced by the block identification when refer-
enced in the task descriptions (Section 4.2.1.2) or in evaluation allo-

cation restrictions (Section 4.2.3).

4.2.1.2 Memory Characterization - A wide variety of memories

may be incorporated into a candidate design configuration for a flight

trainer. For purposes of partitioning, memories are categorized (as de-

noted in Table 6) to include read-only memory (ROM), writable control

stores (WCS), main random access memory (RAM), rotating random access

mem ory (RRAM), and sequential memories (SM). Within each of these
categories are additional retrieval and storage characteristics for data

representations of addressable units. These representations permit the

generic data block parameters of Section 4.2.1.1 to be matched with

appropriate memory devices in the candidate configuration for which
partitioning is being performed.

4.2.1.3 Task Characterization Specification of task attri-

butes, which are independent of the processing hardware, poses a very
challenging problem area for incorporating the traditional hardware-
dependent design customs and notations that have evolved not only in

flight training simulator design but computational system designs in

general. At this point in software design history, several emerging

philosophies for design standards seem to be contradictory concerning
the level of specification and the documentation language used to convey
the detailed software algorithms to be implemented. At one extreme is

the use of English-like structured pseudo code, which is favored for its

features of being easy to follow and comprehend. On the other hand,

there is an emphasis for precise, unambiguous mathematically enumerated

representations that provide the specific computations but, if not
annotated with English descriptions, they become very hard to follow,

except for persons who are very familiar with the specifics of the

algorithm. Most designs are generally a mixture of these two approaches,

61

65

www.manaraa.com

TABLE 5. DATA BLOCK CHARACTERIZATION

ATTRIBUTE VALUES UNIT/MEANING

Identifier 6-Character Provides a unique identifier
Mnemonic for cross-reference and

labeling purposes

Level 1 Character

. 'S' System Interface
= 'G' Global (used by more than

one task)
. 'L' Local to one task but must

be saved
. IT Temporary scratch area for

a given task

Discipline 4-Character Code Provides basic I/O requirement
for determining suitable
memory device allocation

. 'FIFO' Queue

= 'LIFO' Stack

. 'SEQ' Sequential

= 'RAN' Random
u 'ROR' Ready-Only Random
= "ROS' Ready-Only Sequential

= 'CBUF' Circular Buffer

Sizing

Maximum Records Positive Integer Records

Bits/Charac-
ter

Positive Integer Bits

Characters/Word Positive Integer Bytes

Average Words/ Positive Integer Words

Record
Maximum Words/ Positive Integer Words

Record
o Minimum Words/ Positive Integer Words

Record

66

62

www.manaraa.com

TABLE 6. MEMORY DEVICE CHARACTERIZATION

ATTRIBUTE VALUES

Identifier

Type

Size in Bits

Minimum
Maximum
Increments

Number of
Different
Addressable Units

For Each
Addressable Unit

Level

s Bits/Unit
Level

Read Access
Time

Read Cycle
Time Unit

Maximum
Sequential
Units Trans-
ferred for
Single Read

Write Access
Time

10-Character
Mnemonic

4 Characters

= 'ROM'

= 'RAMM'

= 'RRAM'

'SM'

'WCS'

UNIT/MEANING

Positive Integer
Positive Integer
Positive Integer

Positive Integer

4-Character Code

= 'BIT'

= '6BB'

= 'BBB'

= 'WORD'

Positive Integer

Real

Real

Positive Integer

Real

Provides a unique identification
for each memory device in the
technology data base for which
the following attributes define

Read Only Memory
Random Access Main Memory
Rotating Random Access Memory
Sequential Memory
Writable Control Store

Bits
Bits

Bits

Bit Addressable
6-Bit Byte Addressable
8-Bit Byte Addressable
Wora Addressable

Exclusive of Parity or Error
Deletion Correction Bits

Nanoseconds

Nanoseconds

Same as Unit Level

Nanoseconds

6(
63

www.manaraa.com

TABLE 6. MEMORY DEVICE CHARACTERIZATION (Sheet 2 of 2)

ATTRIBUTE VALUES UNIT/MEANING

Write Cycle Real Nanoseconds
Time/Unit

Maximum Positive Integer Same as Unit Level
Sequential

Units for
Single Write
Access

Error Detection/ 6-Character Code
Correction

= 'PARITY' Parity Bit
= 'SECDED' Single Bit Error Correction

Double Bit Error Detection

Number of Sup-
pliers for Each

Positive Integer

Supplier

Identifier 10 Characters Unique Identifier

MTBF Real Hours - Mean Time Between
Failures

MTTR Real Hours Mean Time to Repair

MSPM Real Hours - Rescheduled Preventive
Maintenance

a MTPM Real Hours - Mean Time for Preven-
tive Maintenance

6 Q

64

www.manaraa.com

which facilitates the overall functional flow, high-level presentation

and permits a traceability structure for enumeration of detailed design

computations and decision logic.

The remaining problem area of design specification relates to

the specific notation. Certain aspects of flight trainer computational
algorithms have become well-defined, i.e., aircraft flight kinematics.
These algorithms are generally used for making benchmarks on new candi-

date processors. Thus, for well-established algorithms, a master set of

simulation task benchmarks can be established for each candidate proces-

sor being considered. New algorithms require a more fundamental break-
out of the instruction mix to ascertain timing and siting elements. In

summary, a master set of software task attributes are presented in

Table 7. The establishment of a master instruction mix, task I/O

descriptors, and task enablement features is recommended as one of the

steps (Section 4.4) toward algorithm implementation. Related to this

master instruction mix is the development language for task code genera-

tion. Recent trends in simulator coding have incorporated FORTRAN code

for the scientific mathematical application models, but there is still a

strong dependence on the assembly level code for expressing real-time

executive and I/O handler modules to meet the real-time timing require-

ments. The selection of a task design instruction mix notation should be

coordinated with the simulation high-order language efforts and proces-

sor instruction architectures.

One way to obtain this information would be the use of a graphi-

cal task flow representation, which included a standard design notation

to indicate the instruction sequences, loops, and relationships with

I/O. A flow notation, such as TBE's Input/Output Relationships and

Timing Diagrams, can be automatically traversed with the instruction mix

and I/O features being identified and reformatted for use with the parti-

tioning algorithm. This would require that a standard flight trainer
computational design language and flow representations be established,

thus providing a standardized way for documenting the detailed task

computational designs.

An important note is made here regarding the traditional means

of expressing task sizing and timing in terms of adds, multiplies,

branches, etc. The instruction mix need not be at the machine level.

Instead, it should reflect a set of simulation macros, such as single

variable linear table interpolation, and trigonometric functions. Each

of these, in turn, is characterized for each candidate processor as to

timing and sizing. If the simulation macro has been implemented in

firmware or as part of a mathematical package, the sizing is reduced in

terms of the main instruction storage for the task.

4.2.1.4 Processor Characterization - Processor technology is

constantly expanding in terms of operating system and instruction set

capabilities. Table 8 lists processor attributes that pertain directly

to the software partitioning, algorithm. The operating system features

65

6J

www.manaraa.com

TABLE 7. TASK CHARACTERIZATION

ATTRIBUTE VALUES UNIT/MEAINING

Identifier 6-Character Provides a unique identifier
Mnemonic for cross-reference and

labeling purposes

Source Language 10-Character Must match entry in the
Code master source language

list maintained for current
processor technology

Instruction Mix
for Each Instruction
Type:

Instruction Iden- 10-Character Must match entry in master
tifier Code simulator instruction mix

identifiers

Sizing Count Positive Integer Number of times this instruc-
tion appears in code

Execution Count Number of instruction inter -

AverageAverage Positive Integer
considering looping

conditions for average and
Worst Case Positive Integer worst-case logic

Data Retrieval for
Each Task Input

Block Identifier 6 Characters See Table 5

When 6-Character Code

= 'START' All records read at first
of task before main proces-
sing

. 'ALONG' Records processed one at
'a time

Average Input Positive Integer Records

Minimum Input Non-Negative Records
Integer

Maximum Input Positive Integer Records

66

www.manaraa.com

TABLE 7. TASK CHARACTERIZATION (Sheet 2 or 2)

ATTRIBUTE VALUES UNIT/MEANING

Data Storage for Each
Task Output:

e Block Level 1 Character See Table 5

e Block Identifier 6 Characters See Table 5

o When 6-Character Code

= 'ALONG' Records are output via indi-
vidual processing

= 'END' Records are output just prior
to task exit

Average Output ,Positive Integer
.

Records

Minimum Output Non-Negative Records

Integer

Maximum Output Positive Integer Records

Enablement

Type 4-Character Code

. 'TIME' Time Enabled

... 'DATA' Data Enabled
= 'SLVD' Slaved to Master Task

= 'TAD' Time and/or Data Enabled

o Frequency 1 Real Iterations/Second for Time
Enablement

e Frequency 2 Real Iterations/Second for Data
Enablement

Frequency 3 Real Iterations/Second for Slaved

67 71

www.manaraa.com

TABLE 8. PROCESSOR CHARACTERIZATION

ATTRIBUTE VALUES UNIT/MEANING

Identifier 10 Characters Unique identifier for pro-
cessor with the following
attributes

Operating System

Multitasking

ALevels Integer
.GE.1

ANumber of Integer These many levels are ser-
Priority Levels .GE.O viced in a priority fash-

.LE. Levels

'...,

ion. The remaining levels
are serviced in a circular
time-shared fashion.

Enablements :, Integer Enablements/Second

Amaximum Time
Enablemeht
Frequency

A Resource F10.9.GE.0 Microseconds
Management per
Time Enablement

AiMaxixs Data Integer Enablements/Second
Enablement
Frequency

AResource F10.9.GE.0 Microsecond
Management per
Data Enablement

Maximum Slaved Integer Enablements/Second
Enablement
Frequency

Resource F10.9,GE.0 Microseconds
Management per
Slaved Enable-
ment

68

www.manaraa.com

TABLE 8. PROCESSOR CHARACTERIZATION (Sheet 2 of 3)

ATTRIBUTE VALUES UNIT /MEANING

For Each Task
Level L

Amaximum Number
of Task Level L

Integer .GE.1

ATask Service Code

Scheme for
Level L

= ip Priority
= 'C' Circular
= 'F' First-in, First Out

Level Resource F10.9 .GE.O Microseconds

Management

Simulation Instruction
Set Measurements for
Each Benchmark
Instruction 1

Sizing
Measurements

A Number of Code
Memories
Involved

The Memory Type for 4-Character Code Must agree with master

Each Code Memory m memory types defined in

(the first memory is
the user task code --
any other memories are
predefined for this
processor)

Group 4

ALength of Code Integer .GE.1 Number of basic units used

in Memory m to describe memory m (see
Group 4)

www.manaraa.com

TABLE 8. PROCESSOR CHARACTERIZATION (Sheet 3 of 3)

ATTRIBUTE VALUES UNIT/MEANING

Timing Measurements k=1 Implies Average
for Each Code k=2 Implies Worst Case
Memory m and k=1,2

Number of Scratch Integer .GE.O
Data Store Waits

A Number of Scratch Integer .GE.O
Data Store Waits

A Computational Integer .GE.O Cycles
Total for All
Memories

Application Develop-
ment Measurements
Using Language L of
the Master Language
List

AkOne Item Develop-
ment Charge

Integer Man-hours

AChange per Appli-
cation Instruction
of this Type

Integer Man-hours

74

70

www.manaraa.com

applicable to software partitioning relate to multitasking disciplines,

limits, and resource management services. The instruction set is

characterized in terms of the master simulation instruction set as
described in Section 4.2.1.3, along with attributes for user memory I/O

versus preprogrammed, resources plus development cost estimates.

4.2.2 Suggested Input Forms

The forms, as designed, may be used directly by a data keying

operator to produce keypunched cards or entry directly onto a file via an

interactive data entry terminal. Specific physical file formats are not

specified since they will be a function of selected computer file image

capabilities described in Section 4.3. Because of the volume of input

sheets, they are presented in Appendix A for each of the data base files.

During the design of the input forms, emphasis was placed on
consolidation end cross-reference techniques that facilitate an organ-

ized straightforward user input interface. The software partitioning

algorithm requires an assortment of specific data to fully define

trainer system interfaces plus computational hardware and software

design details that must be accurate if a good partition allocation is to

be obtained. The separation of forms is based on the five major input

areas, and it is recommended that these areas be standardized for pre-

senting the respective interface requirements, software task/data design

relationships, candidate hardware design configuration, technology capa-

bilities, and evaluation priorities, including the candidate initial

design allocation as a starting point for partitioning optimization.

4.3 TARGET COMPUTER AND SOURCE LANGUAGE SELECTION

The selection of the computer system for the partitioning algo-

rithm should consider, as a minimum, the following feaLures, which must

be incorporated to facilitate automatic implementation of the partition-

ing algorithm and its potential expansions:

1. Data base management system

2. Structured program language

3. Modified linear mixed integer program optimizer

4. Computational speed and accuracy.

"P--h of these features is described in more detail in the follow-

ing para, aphs.

4.3.1 Data Base Management System

The interrelated, yet separate, data files (described earlier in

this section) of the recommended flight trainer automated repository are

best implemented under a standard data base mane& ment system that

71 75

www.manaraa.com

permits creation, update maintenance, and configuration management of
all data and program files. It is recommended that system data file
management utilities be available to the user in several different
modes, including batch job control, interactive terminal commands, and
user program code directives to permit a flexible, yet controlled, data
access environment. Direct record access capability is an essential
feature for implementation of the software task and block description
plus the technology data base files.

The amount of data is a function cf the flight training simulator
computational candidate designs to be evaluated. Table 9 provides an
abbreviated summary of sizing relationships for each record type group
contained in the respective files required for the partitioning algo-
rithm. The data base management should include memory management of code
and data required for execution. Internal tables utilized by the algo-
rithm are sized in Table 10. The algorithm code is estimated to be
10,000 lines of structured FORTRAN exclusive of potential data manager
and optimizer extensions.

4.3.2 Structured Program Language

Evaluation code (code used to facilitate manual analysis) is a

very useful tool if it can be maintained under configuration control and
permit expansion to more detailed models when necessary for a given
evaluation analysis. Structured source code facilitates modularity and,
thus, permits model expansion. Several source languages are included
here as candidates for the partitioning algorithm implementation,
including FORTRAN 77, JOVIAL, and ADA. These languages were selected
based on current DOD-approved languages and language development activi-
ties. Pros and cons for each are now presented.

The widespread recognition of FORTRAN for scientific and mathe-
matical programming makes it the preferred language of the three lan-
guages considered. The newest ANSI FORTRAN 77 standards incorporate
character manipulation, which is independent of machine architecture.
Its use of structured logic includes both true and false process defini-
tions without the use of extraneous "GO TO's." File manipulation capa-
bilities have also been expanded to include file status checks and
standardization of certain types of data storage/retrieval mechanisms
that have previously required vendor-peculiar FORTRAN extensions. Some
problems may be encountered with new compilers being released to meet the
new VORTRAN standards, but these compilers should evolve rather quickly
to support most of the ANSI 77 features. This will result in code that
is more easily transported from one machine to another. This is an
important aspect, since the partitioning algorithm does not require a
deaicated computer system, and as such, it is envisioned as being a
useful tool for flight training simulator developers and maintenance
reconfiguration analysts, as well as for. Air Force evaluators. Each of
these specialists generally has his own in-house computer system
tailored for specific analysis needs.

72

www.manaraa.com

TABLE 9. EXTERNAL FILE SIZING REQUIREMENTS

FILE RECORD

IOPT TITLE TYPE GROUP TITLE SIZE

Trainer Computational
Interface Requirements

Sequential
80-Column
Card or

Keyboard

1 File ID 20 Characters

2 System Interfac Device 1 to 3 Cards
per Device

3 System Data Block
(or Buffer)

1 Card per
Block

2 Baseline Application
Components

Sequential
80-Column
Card or

Keyboard
Entries

1 Software Jc% A ID 20 Characters

2 Data Block Definitions .1 Card per

Block

3 Task Definition 1 Header Card

1 Card per
Instruction
Nix Definition

1 Card per Task
Block Reference

4 Baseline Load Definition 1 Load Header
Card per Load

1 Card/Task/Load

7"

www.manaraa.com

TABLE 9. EXTERNAL FILE SIZING REQUIREMENTS (Sheet 2 of 3)

FILE RECORD

IOPT TITLE TYPE GROUP TITLE SIZE

3 User Evaluator Inputs Sequential
80-Column
Card or
Keyboard
Entries

1 Run File Identifiers 2 Cards

2 Global Evaluation
Factors

3 Cards

3 Specific Evaluation
Factors

1 Card/Factor

4 Partitioning Assignment
Constraints

1 Card/Constraint

5 Selective Coefficients Coefficient

Selection

4 Candidate Configuration

Definaion
Sequential
80-Column
Card or
Keyboard
Entries

,

1 File Identifiers 1 Card

2 Candidate Device
Definition

1 to 3 Cards
per Device

5 Technology Data Base Random
Access
Hierarch-
ical

File
Data
Base
Structure

1 File Identifer 20 Characters

2 MaNte- Technology Lists

Component Categories

4) Devices/Component

10 Char/Category

10 Char/Device

www.manaraa.com

TABLE 9. EXTERNAL FILE SIZING REQUIREMENTS (Sheet 3 of 3)

FILE RECORD

'OPT TITLE TYPE GROUP TITLE SIZE

5 Technology Data Base
(Concluded)

Instructions

Block Disciplines

Block Types

Languages

10 Char/Instr

4 Char/Disp

1 Char/Type

10 Char/Lang

n+2 Component n's Specific
Device Definitions and
Attributes

See IOPT-5
GRP n+2

79

www.manaraa.com

TABLE 10. INTERNAL ALGORITHM TABLE SIZING REQUIREMENTS

TABLE
IPT NO. TABLE TITLE

WORDS
(60-bit words)

1 Limits, Constants, and Code 20

2 Current Problem Sizing Controls 9

3 Priority Controls 28

4 Current Processor List P*(13+i)

5 Current Memory List 11*M

6 Current Communication Link List (3 +3 *QND) *9

7 Current External Device List (4+DB)*d

8 Task/Processor Allocation and 9*T*P
Restrictions

9 Memory/Processor Communications (4+4e)*M*P
Allocation and Restrictions

10 Memory/Block Allocation and 5*M*B
Restrictions

11 Master Block List (11+M+2T)*B

12 Master Task List (16+5i+6*B+e)*T

13 Scratch and Local Parameters To be Defined

76

www.manaraa.com

JOVIAL is mentioned because of its recognition by the Air Force
as a standard language for embedded computer systems development. A

major drawback is its limited I/O capabilities, which is a major factor
with regard to the partitioning algorithm's large data base handling
requirements.

ADA is also mentioned since it is the DOD language being
developed with source language standardization as a major goal to sup-
port software development of new military computational subsystems. The

on-going compiler developments are limited to experimental compilers and
compiler design efforts. Therefore, at this time it is not a feasible
candidate for actual algorithm development and testing. It will be 2 to

3 years before it is available in an operational development setting.
Further implementation/expansion should monitor and consider ADA since
its features will permit more configuration control as well as the struc-
tured expression of concurrent process control flows, I/O, and computa-
tions with concise data base definition.

In conclusion, FORTRAN is the recommended language for imple-
mentation of the partitioning algorithm.

4.3.3.--Modified Linear Mixed Integer Program Optimizer

The partitioning algorithm has the potential for future inter-
faces with a modified linear program mixed integer program optimizer.
The current algorithm design is based on a heuristic algorithm driver

that assumes that an initial feasible partition exists with respect to
the basic rerl-time processing requirements of data availability, task

timing, and less than 100% processor/memory alloc:ltion. From this
initial feasible solution, it seeks to determine and make improvements
on the initial partition with respect to three goals: (a) processor load

balance within given growth allotments, (b) memory utilization within
growth tolerances, and (c) minimization of development costs. Although

heuristics do not guarantee an optimal solution, it is anticipated that
the complexity of priorities and data constants will change frequently,
which makes the finding of the true optimal a meaningless exercise.
However, optimizers can be employed to help find an initial feasiblP
solution and to find optimal subset solutions under the control of the
heuristic decision tree. In the case of the partitioning algorithm, the
initial feasible solution poses the largest problem in terms of sizing
and numeric accuracy techniques that are required. Table 1 summarizes
the optimizer sizing as a function of the size of candidate designs to be

evaluated.

4.3.4 Computational Speed and Accuracy

Although the partitioning algorithm is not as demanding as real-

time simulation or control codes, it is important that it be able to
support quick-turnaround evaluation runs to expedite the given evalua-

tion case. The complexities of the processor utilization calculations

77

www.manaraa.com

in terms of task computations, resource management, and I/O are iterated
with respect to potential processor tradeoffs for load balance calcula-
tions that involve a variety of attributes. Since the basic computations

are subject to mathematical model expansions and changes, floating point

capabilities are recommended to permit new equations to be introduced,
as required, without the burden of fixed-point scaling.

Units have been selected to keep related variable numeric order
of magnitudes within computational limits of most scientific machines.
These units should be periodically examined as technology advancements
are made. For example, many current real-time flight trainer applica-
tion cycles are based on 1-sec intervals with subcycl.es or subframes
measured in terms of milliseconds. As timing improvements are made,
these may take on smaller increments of time for application cycling,
hence the need for their periodic reappraisal. Another factor is machine
cycle time, which is currently measured in nanoseconds; thus, certain
calculatio' involving memory I/O must be accumulated separately to
obtain totals that can then be used to determine any appreciable I/O
timing for tasks that handle large volumes of data in addition to compu-
tational processing. Typically, 32-bit floating point can represent six
significant digits. Thus, if a basic unit is assumed to be 1 sec, the
nanosecond effectively, is disregarded unless accumulated separately.
However, if either double precision (64 bit) or 60-bit single precision
is used, there is no' problem. An alternative is for task memory I/O,
resource management, and individual instruction timing computations to
be accumulated for total task time in microseconds, and then task times
may be added separately for a given application cycle time in terms of
current task/cycle relationships. Thus, there is the need for floating
point, with a minimum of 32-bit words sufficing for most operations, and
either segmented units or double precision variables to account for
application subtask timing computations.

The use of preemptive priorities rather than weighted priorities
permits processor loading, memory allocation, and development costs to
remain in their standard units without any input sealing and output
rescaling. However, in each priority level, numbers for a given task or
data block should be summed separately from totals being used for total
memory or total processor utilization to avoid underflow.accumulation
problems.

4.4 RECOMIENDED IMPLEMENTATION SCHEDULE

The major tasks and their hierarchical relationships are

depicted in Figure 16. Each of these tasks is briefly described in this
section with cross-references to appropriate report sections for related
details. Although some parallel cask sequences are depicted, there are
some interdependencies, as denoted in Figure 16. These interdepend-
encies are basically handled at major detailed' reviews, which are recom-
mended to be held quarterly to assess the implementation progress, to

78 8°4

www.manaraa.com

1.1

VALIDATION
PLAN

2.
ESTABLISH
MODEL .

VALIDATION
PROCEDURES

3.1
SCRIPT
VALIDATION
PROCEDURE
DATA

1.2
DATA BASE
MANAGEMENT
INTERFACE

2.2
DESIGN
REPOSITORY
PROGRAMS

3.2
DEVELOP
REPOSITORY
PROGRAMS

3.4
VALIDATE
BASIC
ALGORITHM

1.3

COMPUTER
SELECTION

1.4

OPTIMIZER
INTERFACE

2.4
CODE/VERIFY DESIGN
BASIC OPTIMIZER
ALGORITHM PROGRAMS

3.3
DEVELOP
OPTIMIZER
PROGRAMS

4.1
VERIFY
EXPANDED
MODEL

4.2
VALIDATE

MODEL
EXPANDED

4.3
FORMAL
ACCEPTANCE
TESTING

4.4

FINAL
REPORT

Figure 16. Algorithm implementation tasks.
79

83

www.manaraa.com

ensure that interface definitions are adhered to, and to establish more
detailed interfaces as the appropriate operational consideration details
become known.

Figure 17 groups the tasks into four major implementation phases
over a 2.5-year period. There is an overlap between Phase III and Phase
IV, with the major emphasis of Phase III placed on basic (as currently
designed) algorithm validation and with Phase IV emphasis on an expanded
validated model incorporating an optimizer for selected aspects of the
partitioning algorithm. The implementation tasks are now described by
phase. To make a complete task statement, there is some redundancy with
earlier report sections. Cross-references are made to avoid excessive
redundancy.

4.4.1 Model Validation Plan and Selected Computer Interfaces

Although the candidate computer selection aspects have been de-
scribed (Section 4.3), the specific computer implementation must be fur-
ther delineated to obtain a practical partitioning allocation and eval-
uation tool for flight trainer simulator computational candidate design.
Existing evaluation computer facilities should be reviewed for current
formats and data collection procedures in addition to the current com-
Fo,ter capabilities to contribute basic inputs to the Phase I tasks, which

are now briefly described.

4.4.1.1 Validation Plan The sample problems manually demon-
strated under this contract have verified the feasibility of the parti-
tioning algorithm design. However, they do not constitute a model cali-
bration case from which a confidence level of model validity may be
derived. As evidenced in the mathematical statement of the partitioning
'.,2,2oblem (Section 3.1) -, there are many interrelated variables and factors

that drive the partitioning process, necessitating some parametric auto-
mation techniques to fully analyze the automated design validity and
stability for real-world data. The validation plan will permit con-
trolled algorithm implementation testing to determine its validity with
respect to known partitioning situations of selected flight training
simulator Compuyatational designs. By addressing evaluation partition-
ing problems to be handled prior to algorithm coding, the evaluation
community is essentially establishing the foundation for the algorithm
acceptance test with respect to its role as an evaluation tool.

As a minimum, the validation plan should identify the flight
trainer system(s) to be used as the algorithm implementation baseline.
It should also extrapolate intended sizing of the algorithm application
in terms of the number of each data base item described in Section 4.2
(i.e., number of tasks, blocks, processors, memories, etc.). A set of

test cases should be draft.'d in an outline format as to specific algo-

rithm features to be incorporated and tested for both the basic model and

the expanded model.

84
80

www.manaraa.com

PHASE I

TASK DESCRIPTION Ti
MONTH

3 g 5 6

I IT1,1

1.2

T.1

Ti

VALIDATION PLAN

NINONMNMI

i
DATA MANAGEMENT PLAN

COMPUTER SELECTION

OPTIMIZER INTERFACE

PHASE II

TASK DESCRIPTION

NM
iligilii
111111

MONTH

TO 11

iii
120

2.1 VALIDATION PROCEDURES

2,2 DESIGN REPOSITORY PROG,

2.3 CODE/VERIFY B,A,

2.4 DESIGN OPTIMIZER PROG,

PHASE III

TASK DESCRIPTION
MONTH

13 14 15 16 17 13 10 20 21

3,1 SCRIPT VALIDATION DATA NI 1$,

3,2 NNEiiiiiiiii,
1

iiiiiiii...
3,3 DEVELOP OPTIMIZER PROG,

3,4 VALIDATE BASIC ALGORITHM

A INTERIM ON.SITE DEVELOPMENT

PROGRESS REVIEW AND DISCUSSION

0- DOCUMENTED PRESENTATION TO AF

0- INDEPENDENT ASSESSMENT REPORT

TASK DESCRIPTION

4,1 VERIFY EXPANDED MODEL

4,2 VALIDATE EXPANDED MODEL

4,3 FORMAL ACCEPTANCE TESTS

4,4 FINAL REPORT

119 20

MONTH

.
21 22

111111

25 26 27 20 29 30

Iii
1111.4.

Figure 17. Projected time relationship of tasks.

86

www.manaraa.com

4.4.1.2 Data Base Interface - The specific flight trainer com-
putational design repository format and data base management utilities
should be delineated by this task. This includes finalization of the
user interface formats (such as those contained in Appendix A) and the
format by which the partitioning algorithm may retrieve its inputs and
store its outputs with respect to the repository and the interacti'
and/or batch user.

This task incorporates the data collection, storage, and

retrieval mechanisms, plus quality assurance steps necessary for algo-
rithm implementation and usage. The repository data management should
incorporate responsible agencies for each input area and make maximum
use of pre-editing and file management utilities of the selected com-
puter system. The results of this task should be compiled in the form of
a users° manual for the flight trainer design repository and specifi-
cally address the partitioning algorithm interfaces. These interfaces
include the master design simulation language instruction set and guide-
lines for processor, memory, task, and data baseline descriptions
(covered in Section 4.2) that will streamline the orderly preparation of
inputs and permit gradual contLAled growth into a fully tested and
implemented repository system for multiple evaluations.

4.4.1.3 Computer Selection Computer candidate selection has
been discussed in Section 4.3. This task ties Phase I activities
together to determine the specific coding standards and i)terfaces to be
employed for algorithm implementation for a given computer facility.

Optimizer Interface - This task permits the long-range
interface goals to be defined for potential optimization steps in the
heuristically driven partitioning algorithm. This is a major area for
further study and, as such, is recognized in Section 5.3.

4.4.2 Automated Algorithm Verification and User Design
Foundation

rhase II permits the initial automation of the basic algorithm
and delineates addition,L programs that will aid in the bookkeeping and
increase computational confidence levels of an expanded partitioning
algorithm. Each of the tasks is now defined.

4.4.2.1 Establish Model Validation Procedures - This task
expands and enumerates the test cases outlined in the test plan of Phase
I. The nature of the basic partitioning algorithm is to seek and, if
possible,-find an improved partition of tasks. Thus, the test procedures
rust include the means for reconfiguring, the subject flight trainer for
which 4;;;oupposedly "bei'.ter" partition has been found. In addition,
related performance measurements of the newly partitioned configuration
must be upe-:ified as to what an- how they are to be collected and
evaluated to access the sprici. J partition im?rovements of the parti-
tioning algorithm. To e5.]: in this step, the multiple processor

82,

8'7

www.manaraa.com

simulator being designed under separate contract may be used to provide a
quick look at the dynamic aspects of the new partition prior to making a

reconfiguration decision. All of these considerations must be placed
into a timeline for algorithm validation testing to account for permis
sible reconfiguration in the partitioning restriction. For example, if
specialpurpose tasks may only reside on specialpurpose processors,
they shoul be declared as such in the partitioning algorithm evaluation
options. Thus, realistic, measurable validation test procedures are the

goal of this task.

4.4.2.2 Design Repository Programs The users' manual of Phase

I will undoubtedly require specific repository storage/retrieval pro
grams to be designed to augment the system supplied data base capabili
ties to support the flight trainer evaluators "input jargon" and to
efficiently handle the input and subsequent updates to each of the vari
ous files to ensure consistency and completeness of any given repository

transaction. The results of this task constitur,-, the detailed design of
each and all repository programs to be implemented in Phase III.

4.4.2.3 Code/Verify Basic Algorithm This task is the most
straightforward of all of the tasks and simply entails the coding, debug
ging, and verifying of the basic algorithm as designed and demonstrated
as part of this subject contract. This provides the working baseline for

all future expansion in both model repository and optimizer interfaces.
The reslts of this task provide a source code listing, verification test
case execution outputs, and documented interpretation.

4.4.2.4 Design O _ptimizer Programs The emphasis of this task is

to be ple,c7.4 on upgrading and complementing an existing mathematical
optimizer package selected in Phase I with resp,.:t to computational and

logic needs peculiar to the partitioning Aplication. This task

requires extensive knowledge and experience with mathematical optimiza
tion codes and e:eir numerical stability in terms of a:curacy, scaling,

iteration, masking techniques that can judiciously expedite the

solution search for initial feasible solutions. The task also
requires kn,'edge and experience with optimal subproblem solutions as
called by tie heuristic driver of the basic algorithm. The results of

this task will comprise the detailed design of programs to be implemented

to support Cle optimizer interface.

4.4.3 Basic Model Validation and Expanded Program Interface

Development

This critical phase per,lits the largescale, re,11world data
assessment of the basic algori'shm to be made. The first part of Phase
III is associated with specific d ta collection, scripting, and support

program coding. The latter part of this phase incorporates efforts of
the first part for basic algorithm validation testing. In addition, the

optimizer programs are developed in preparation for the Phase IV'

expanded model. Each of the Phase III tasks is now described.

83
88

www.manaraa.com

4.4.3.1 Script Validation Data - Validation input data must be
collected and prepared utilizing the validation input procedures for
each test case for basic algorithm and expanded algorithm validation
cases. A b 't case can not proceed until its basic inputs have been
properly prepared.

4.4.3.2 Develop Repository Prog,.ams The programs designed in

task 2.2 of Phase II are coded, debugged, and verified by means of
validation input procedures to assist in the input processing of
task 3.1.

4.4.3.3 Develop Optimizer Programs This task codes and debugs
the programs designed in task 2.4 of Phase II in preparation for expanded
algorithm verification and validation of Phase IV.

4.4.3.4 Validate Basic Algorithm - Each validation test case is
made in the order prescribed in the test procedures. If any problems are

encountered, their impact on the test plan and case procedures must be
fully evaluated to determine what action, if any, is nec-,,,sary to con-
tinue the test program. All test execution reports should bt:-. included as

appendices to the test summary report. It is anticipates? _hat certain
validation tests can be run prior to complete implementation of the
repository to exercise the fundamental paths of the algorithm.

4.4.4 Expanded Model Verification, Validation and Formal

Acceptance Testing

Phase IV paves the final path to the realization of the parti-
tioning algorithm as part of the standard flight trainer simulator comp-
utational design evaluation and/or design guide tool. The full reposi-

tory and added optimizer capabilities developed in the first three

phases are now integrated and tested to provide a controlled user inter-
face for multiple evaluation situations. The tasks are now defined.

6..4.4.1 Verify Expanded Model This task consists of selected

basic algorithm test cases to verify that these cases are still properly
handled in the expanded model. In addition, new path verification tests

are incorporated by the designer to verify that new capabilities are

working as designed.

4.4.4 2 Validate Expanded Model This task performs the exten-

sive testing as defined in the validation procedures for the extended
model. As with basic algorithm validation, if any problems are

encountered, their impact on the test program must be evaluated and it
must be determined whether any action is necessary for continuance of the

test program. All execution results should be included as appendices to

the test summary documentation.

4.4.4.3 Formai Acceptance 'lest The complexity of the parti-

tioning algorithm and its potential evaluation decision-making impact

84 89

www.manaraa.com

necessitates the need for formal Government acceptance tests. TI-ese

tests should be scripted and performed by an independent organization to
fully assess the delivered capability with respect to completeness of
documentation, configuration, quality, and purpose. The major developer

is involved as a consultant to explain or expand documents and to respond
to any questions concerning the delivered operational package. It is

anticipated that Government flight trainer system evaluators will be
responsible for scripting and conducting these independent test proce-
dures since the test will serve as a training task that emphasizes the
intended operational user environment of the algorithm.

4.4.4.4 Final Report The emphasis oc this task is to be placed

on finalizing documentation of the automated algorithm capabilities,'
findings, and conclusions. This documentation should be accompanied
with the final user, test, and program maintenance documentation for
specific program implementation details.

www.manaraa.com

5. U'Y.4CLIJDING REMARKS

Softviare partitioning is a complex, design development/
evaluation, decision-making process with many tradeoffs to be analyzed
for selecting a good candidate flight training simulator computational
design for a particular operational trainer implementation or upgrade.
This section briefly summarizes the details presented in Sections 2

through 4 in terms of the study findings, related work, and areas for
further study.

5.1 FINDINGS

Candidate software designs expressed independently of candidate
hardware are the basic key design feature that permits software parti-
tioning flexibility. This is not the traditional design approach cur-
rently in use for system design. This project has defined the types of
design data that will permit independent assessment of baseline software
tasks for alternative multiple-processor configurations. The key data
areas are the establishment of a standard design language and an auto-
mated repository for the given application design data.

The partitioning algorithm has been designed as a general parti-
tioning algorithm for software systems, and it is the data collection
process (Section 4.2) that will make this algorithm unique for a given
application implementation. In this way, it is seen as a useful tool for
the evaluation of a wide variety of computational subsystem designs
since it is not constrained to current configuration, technology, or
application.

5.2 RELATED WORK

The results of this effort are closely coordinated with Contract
No. F33615-79-C-0003 for the AFHRL Advanced Multiple Processor Configu-
ration Study. The multiple-processor study is concerned with features
and techniques for assessing the predicted performance of given alterna-
tive candidate designs. The partitioning algorithm is looking at task/
data allocation from a static analysis point of view to ensure that real-
time computational requirements are met with a balanced load. The number
of entities that must be considered requires that parametric analysis in
terms of average or worst-case numbers be used in the partitioning
process. The dynamic environment of the flight trainer computational
task allocation requires the addition of network, queuing, and simula-
tion (batch mode) tools to predict and assess the performance of a given
allocation partition with respect to representative scer,rio loads and
resource management rules. The multiple-processor configuration con-
tract is incorporating and expanding the conceptual repository to

include tne dynamic performance design aspects that are pertinent to

86 91

www.manaraa.com

alternative computational candidate :teoign evaluations for operational
flight trainers. The results of this related effort are to be published
in the final report scheduled to be distributed on or about 31 Oct 80.

5.3 AREAS FOR FURTHER STUDY

Advancements in systems development and training features are
sources of continuous change for flight trainer systems. A "good" system
today may be obsolete in ! years or less if it does not possessmodular
design capabilities. .s is particularly true of the computational
system, which must act: as a coordinator, interface, and decision-maker
to assist the human operators and commanders to better perform their
jobs. As new/upgraded flight trainer systems are required, the basic
design models plus new/modified modules may very likely require reallo-
cation of new processor, communication, and memory technologies. Two
major areas of study have been isolated as the key to potential reali-
zation of a truly automated software partitioning algorithm:

1. The employment and expansion of mathematical, mixed integer,
program optimizer trchniques for large - ,'tale partitioning
with multiple objectives

2. The development of a master flight training simulator compu-
tational subsystem design repository.

These two areas have been incorporated as major tasks associated with
automation of the partitioning algorithm described in Section 4.4.

In conclusion, automated software partitioning is feasible. It

will require further study, design, and test stew: that are directly re-
lated to computer facility selection frr its implementation. The major
training simulator candidate design impact would be toward standardiza-
tion and separation of the software design representation and data from
processor hardware configuration representations and data. The results
of the standardization would permit a consistent flight trainer computa-
tional design automated repository to be established and used in both new
design and current design evaluation tradeoffs in the areas of software
partitioning and predicted performance of multiple-processor configu-
rations. The use of an optimizer will permit certain tradeoffs to be
automatically made and determined in 4 more straightforward manner, per-
mitting more time for manual evaluation comparisons and decisions.

www.manaraa.com

APPENDIX A.

USER INPUTS

89

www.manaraa.com

EVALUATION RUN IDENTIFICATION 1) 1 1. j,11.1.1111,1.11.11.1

PAKITION NUMBER LILLJ

FILE IDENTIFIER

COMPUTATIONAL INTERFACE REOUIREMENT3

BASELINE APPLICATION COMPONENTS

CANDIDATE CONFIGURATION COMPONENTS

BASELINE PARTITIONING LOAD

TECHNOLOGY DATA BASE

u 1 III (0.1.1.1.1.L.LuJ

www.manaraa.com

EVALUATION RUN IDENTIFIER LL.11.11,1......11,.L.LLaILL.L.

GLOBAL EVALUATION FACTORS

PRIORITY ORDER GOAL
UPPER

LIMIT

COEFFICIENT

LEVELS

MAXIMUM

ITERATION;)

PROCESSOR UTILIZATION

(% BUSY)

MEMORY UTILIZATION

(% OCCUPIED)

DEVELOPMENT COST

(PERSON YEARS)

U

U

U

LLL.,4-1 l...U_Idliiil

IIILI 2111..1

AVERAGE WORST CASE

AVERAGE WORSi CAR:

AVER :1 WORST CASE

L.1.111.1..L.L.L.Li

LLJ-1-i-LLA-U-1

Li LI

LLLj_LLwj.,J

U1111.11-1-U

,...---1--

L.1.11.1.1i...ilLi ,$,,11.2..ui

95

www.manaraa.com

COMPUTATIONAL SUBSYSTEM INTERFACE REDIIITIEMENTS FILE IDEPiFiriF.n

REQUIRED COMPONENTS

corimicuT UNIOUF.

SYSTEM

IDENTIFIER

OPTION

1, 4, 1, ...

OPTION

7, 5, A, ...

OPTION

3, G, 9 ...

CONTINUE

INDEVICE

LLS

uj

LLJ

I.J.J

LL J

L.!

LU

LLJ

Lij

L.L.I

lloiJilitj
1.1.1.L1 1 1 Luj

111L.Ittlil

L111,11)10

LL/Llit fill

1,tittl11tli

oLIIIIII)I

ilijiJjtid
itjult_Luj

L u i1) 1 1 1 1

1111'1111j

11111111111

iilliltilij

bitillitil
!III LL-1 I t 0

LL.L.u.I.LLui

(1111,11Ltli

Lujjju_LI,J

Lu_tinjjjj

LLU-LLU-IJ

hill] u.... I

LJ

LJ

U

U

U

Ii

U

U

LJ

U

LLLI-LJ111IJ

L1 11-1 1 J ILIIill'ill

L i 1u 1 11.. L 1 1.1

,1 .L

I L. L L . a L L a J J. . .

LL11,..1.1.11.11...)

Iiiitii:j..,,j

I I I) L I 0 I k..)

.

tiiiiiiii.j
L.LLAtiitli I

1....L.LuiLuLI

1...u.11.1..U.-U-/

LI 1.1.) 1 Li 11J

. .

limb) 1.0

I I Li ihtt ILULILULI

1,1111111.1-11

l_l_uu_j_jj

LLLu1.1.1111

L L J . . u L L u , J

,Lj

L u 1 1 1 4 1 . u J

I i i t 1 1 1 1 t i l

. . _ . .

t i i t I f u l l , tj Li LI tji I I

.

L u j j j j L u j

IiiiIIILLIIIiiiLLL_Lt,JJ [L.111101_11 Lu4.1.1.14.1.1

PU PROCESSOR

DEVICE

I ACTIVE LEVELS

4 LANMAGE 1

2 . OPERATING SYSTEM

5. LANGUAGE 3

3. LANGUAGE I

6 LANGUAGE 4

CONTINUE IF

PIPE LANGUAGES

e.PIE SPECIFIFO

lillAreMORY

DEVICE

1. SIZING UNIT 1 SIZE

CI. COM

DEVICE

INTERFACING

DEVICE TYPE

INTERFACING

COMPONENT

PRIORITY CONTINUE IF

MORE INTERFACING

DEVICES

www.manaraa.com

I EI.11Noti)GY DATA RASE 'DENT if tEn

BY TE
1

, 1 8175

unrilA fING SYSTEM I , CYCLE !ME: , , , lit S/W0110

MULTI TASK LEVELS*

rmoniTY LEVELS.

ADDRESSABLE MEMORY: I LU , I 1,,
OnEnA !MG SYS. nirmany I .T_LJ
stipponT LIMITARY MEMORY

SIZING

K M

K M

K M

UNITS

BYTES worms

BYTES WORDS

BY TES VI/OPDS

nu) -

AMISS , , I

ANGIIAGE

I I ») 4 1 , 1 1 5 L.-

21,,,,I,,

II SPIVOM)

1 I 1 1, 1 1 . 1 1 7 Li._ 1 1 1 I 1

11111111 III "11
MULTI TASKING FEATURES AND 1ESOUBCES

LEVEL
i l j

MAX
TASKS

SERVICED
P PRIORITY
C- CIRCULAR
F - FIFO

RESIDENT (f4)
NON1ESIDENT INn)
BATCH (B)

ENABLEMENt II ,-.)tnICE Mr_NAT),-
CIRCLE TYPE(SL

TIME SLAVE DATA
I I., iTNCY
(Iv SECOND

Nn

NIT

NI1

B Nn

Nn

Nn

Nn

Nn

1411FAI)/
:ABLEMENT

Lt_,_ ____[....L..u.i...J....1 , , I L,) 1 I

L_a.....4_1_ __.,._4_4._L-11..-4.____ 2.__'...4._4._.(_t_i

1

-L-L II 1

I I

www.manaraa.com

:11N01_0(: 1, A [LASE. IDENTITIE, 11 tlitt I

nnSic
mrnsw .TNFS

AV)

'N' CAM-

- A NG VAG AT)TOnS:

L L__

LLL

" TIIIC 'or: 1FNCuiI1AUk

) L

ON PlIOCI Sson , iLJ
tisiNn Lj i i I I TAMING SYSTEM

TIMING (CYCLES) ,r v.; LOPPAE I. (MAN YE AllS)

ror FE TC.IILS COMI'L; A T loNA IF TIME PLO OCC1.111,(1(

lit i.t.t 11111 I 1

1,,,,1
LL_LA I , I 1

liii, liii J (Lit

1 Lt ijJ.i

I 1 1__J-1 L__ J

www.manaraa.com

tIti I Ili I ii 1 1 1 11J

MEMORY DEVICE OF riNI nor.

,,,t :l. I Ir lir I, 1 , _1_1 TVIT : I1otdi 11...NI,! -NM SM WI."4

AnDlIES,SAllt r UNIT!:

OR

_,..t. 11.1ti.I____._LJL_L___ 'jet)

L_ i . 1 I _t___: -.J L I tif.1
I -_,._

:I
-_ _____ 1 I I J

1 Tit ill
__-t...3. 1, _ ___L_Li __L-I_-_ X1 1

Li_t I t I I

L-1-1 -'-'--'-- 1-1-1- - ' I 1

1

. l t : -__L.-1

;._1:, ,___s_ i .1_-.1.__ t_a_____ LJ___J

READ (1E TCII)
TF (S1!)1-4,1

IV "SS
Ir. :1) SEC)

CYCLE MAX
UN1 is(NANO SIC)

i: Aiiii
ACCESS
INANCI Sfl I

CIE
^ l'10 SEC)

WRIT" -EN

13
1 t I I LI L

11_ 1 1 1 ' 1_1_1 t I I t

1-1-_1-_1 1_1

_-L 1--LJ-1_1 1 1 1 IJ_L-L_

titl
1-

11 Ill. lit,.13iJ.,1
It) f t 1 1 1 1 LI_ II ,til

1 -I-1-
I LI L1' Lit I I I 1

tit
I I 1 1,111 L.1 L_L_L

r I I I I I I I l_L-1-1-.L_L-1-J-J-J

Ii_111_ I 11,7

I I

11/11!
ttl 1.

I I I I I l I J 1 1 1 1 111111333.3113tit,ttzl
Itt tilitt

l.__L_L-I__L-I,iiifI 1,1,11t, II11.1111111L_3_111,IL__3_,)__1

www.manaraa.com

TECIINOLOGY DATA BASE IDENTIFIER I r tt In ar II 11 trIrlurf
COMMUNICATION LINK DEVICES

DEVICE
IDENTIFIER

BASIC TRANSFER UNIT
MAX UNITS
MAX RATE (tINITS /SEC)

INTERFACING DEVICE ATTRIBUTES

TECII DEVICE
TypE IDENTIFIER

TRANSMIT
UNIT RATE

RECEIVE
UNIT RATE

L11111111E1

14,. till,. 1

1....u......1.....1

1, , , , 1 1 , , 1 1

U.....11,,,1,,,,1
1 1 1 1 . , . , 1 , , 1, f

11L...,_11111.111.11

1 1 , 1 1 1 , , , , , 1 , , , , 1

L1_11_Jl,1,.11,,,l
L L J L J !lie til 11,1

I.1,ti.,,.1

LILLJ

1C1_,I,,11
1,,,,,1,,,.I

LIL-1-1

1,,,.1.1,1
lI ililtiti

- -
l,iIiit ilti oil

.

IiI,I tititlititI
(11,1 1,1111,1111
111---1 irttkirtiri
l_jjI Li_.,,,1,,,,I
l_j_j___I I,,,,i,,,,1
L.111J L1., . . 1 , , , , 1

.

1-1-1-1, Itt111 Illel
l.ilitilintoil
t--I.11,1.,11, 1 1 I

L1 J.....iJ11,1 1 t1,,,1
LL-1-1/ TIltrIrrIr 1

IttirITIrTI

L.L.j...., . I t I I i i

1,11111111.11 1 L1,.....LJIII..',,,1 I
L1_1 1 1 1 1 ,1,,,1 1_tLLj III', 11111

l 1. J 1 . 1 . 1 , , " 1 LiLJJ 1 , . , , , , . I.

11J11,, 111111 111....LJ tx.iit(tillf LLLL/ ittl,'tiii.I
1-1-1J-1 iiIF1111)
11-1-1J It'l i L_E_L_T

t1.11.1, l.,11 LL_L_L L.1--1-111Iiii

l_j_j_j_j LLA__L__1111.11

LE..1..' Liut_/ TrrIT

i_j_jti 1111111 1 1

1 L - 1 1 1 - 1

t1--1 I 1 " ' I . 1 , , 1 L.1LL1 1 r r I 1 1 t__I

I . l i t i i 1 t i t l ,) l i t . I , I , t . 1. , 1 I , , . . ' 1 1, ,1

1 , , . , , , 1 LI_J 1 . . , , 1 , ,_,..-1-1 11L: 1...1. , , 1 , . , , 1 L1.1J-1 1 . , . , 1 , , , .

1,,,,1,.,,1 Iii(t,,,,,,,,1 lit, 1,1,.1,,,.1 L111ilt,,,I,11,.1

l_i_t_jjtutatialill1,11,,,.1,,,,1 11 ,,I 111,11i1 1il

www.manaraa.com

CANDIDATE Emir Ir;unA TioN IDEN ririEn t I t

PROPOSED TO COMP; i? 7- ticr;i4to
LISS L7 MMONKilTi(1 Alt

REPEAT REOUIRED COi.iL 4NtS IF ADD;' 't

COMOVN
CANDIEr.T E

TYPE

L - L - J 1, , 1 1 1 J I 1 t LI 1111i 1

1 --1--1 (i .1 1 t 1 1 1 I t 1 t fit 1111
1_Lj 1111.1 t 111 1, 1111 1111

Li 1 I t t 1 i 1 1 I 111 1,1 . 1, Iii'" '111) 1111'1' 111.--.1

.1 1 1 1 t H tt 1 1

1,1 L1,,,i,111J It11tl 1J

LLJ 11,1,111 1 1 1

Lij

7 1 1 1 1

t t til LLi

111 t

PROCESSOR
DEVICE

-if ACE-

J

t,f i ION CON T INUT

LJ

LJ

LJ

LJ

LJ

LJ

LJ

LJ

LJ

LJ

1 ACTIVE LEVEL U
4 LANGUAGE 2 GUnn1 3

MM Mt mow(
DEVICE

1 SIZING UNIT ra,

CL COM
DEVICE

IN TEREACING
DEVICE TYPE

l0

15I,11 tyv
(11.0 tFNE

3 LANGUAGE
G LANGUAGE 4

CONTINUE IE
MORE LANGUAGES

SPECIFIED

PRIORITY CONTINUE IE
MORE INTEllEACING
DEVICES

www.manaraa.com

O

J

oc

c

:jjjjjjj
:I 3 3 3 3 3 3 3 3 3 3 3 3 3

3

www.manaraa.com

SOFTWARE APNICA I ION IDENI 5 ICAIIC. 1111111i Iti 11,,

5 NU

EME TYPE' LL

INSIr --MN ...IX

!ION

fAST ER T151(- LJ
SLAVED'

MAXIMUM TIME I.1 I I.
FREQUENCY! 1,, I t I

I/O rEn ExEcuIn..

SIZING AVERAGE MAXIMUM DATA
COUNT EXECUTIONS EXECUTIONS BLOCK

" ' I . , + + , (1 1 , 1 1 1 1 1 1 1 1 1 1

I t I III 1 I I t 1 1 II I 1

1 I 1 1 t 11 II. .1,
L 11.1.. ILT' 1 I 1,
I11TIttTr11lilttitTfloI
I 111111,11Itt1ILI11
ItItlitit11111,1,111,1111f

I 1ittillvolI11,111111latiolitt,1
1.1.11111./ 11,1 IT I11111It11T

1.1e :J111,11.1 !L_L_LyIIstalittlil1
LJ1111111,11/1,/,11111.-1111l.1

LLi LJ 1-1_11.1111.1111111 ..111J) t 1 Ittttl,tttt
L I I .1 I I 1 t . I

INPUT' ST:
UPDATE AI
outruT Er.

.1,, 1J TWO

,I1 I WC

HI, "I 'M.

,1t +1 10

it'', 111 IOU 5.1

1111 ti TOO

111 1110 Si.

L_I1,1,1 nm SA'

11ii TuO
l'111,1_LJ s'

L

5

11,,I111 Il/f)

litititIttI IUO 'u

11.10

ITilittli QM

MIN

rCORDS PROCESSED

AVE MAX

I tttttttt lisittIIIII
I I I II I I

Lt. ittlI
I' ,11.111111111111_111
1,l1111

1_L_Li

1 1, 1 L_LJ_LJ I

ItiltIIILLLLJ-11.LJ11111111
II LI_LJ II I I, t t I II

IL11 II ..if L11 tyJ

111 o.ILLLJLLLLJI
II I

111111111111_iljlitIttil
t_.L

Li 1, o_

1 0 3

CIRCLE ONE PER any

www.manaraa.com

BASELINE PAIIIITITTNING LOAD IDENTIFIER ILL.

PATIMIONING TOTAL TIMEFITAMCIIIIli 'FONDS

INDTPENDENT TASK 1 (IATr

TASK TIMF /SL AVE()
AVERAGE aaw,NOM

1!Ittltitall, all

rrsinsi Fi) BATES
AVF.ITAGF MAXIMUM

TIME limit rrii rxrcuilim
AVI 71AGF MAXII.411M

1.,..1

Ile 1,1,11/ ' I,t,tl Itlitlatilj If
ail II tt.1,

I1L1IALLILLL1111aaL1

11,11tail1
1.11,11111.j

'. T I or

IItilIta1 1..111111r.1
It,t1 1../.1_t_ilLaatTIsaaaloaa,

Ittallii,1 lilt, It, at/ t I. /if 1,11.1.1 It., 11,11.1 Ititilittil
IltItItalilL It ttt/ 11111a/1.1ml

lit, 1'1,,.,) I, /la! 111..1 ,1111--Litilittli
tl

iTIIIIII.IITIoatlasttI
Ittiallaalf
1111t1a1
Itaulitalti

I ilia!
Illialattil Llt1111 111111 1,1111,.11.,,1 IT T,I1
111,1,11111 11.111 1.

....MED TO ovErr IDE DEFAULT TASK DEFINITION LOADING. IF TASK IS ENIEITEO AS ZERO VALUE
FOR GIVEN Ft -,ANIEFErtir MEANS TASK IS TO RE PrIOPPED FOR THIS PAIL T TCULAII F.VALUATIDN

.1. L. '1

www.manaraa.com

EVALUATION

SPECIFIC EVALUATION FACTORS

PRIORITY
(CIRCLE ONE)

COMPONENT
IDENTIFIER COAL' UPPER'

LIMO

CIRCLE
COEFFICIENT
LEVEE

PH MR TC 111,1111111 fliiilitoll 111111L_LLj A W

re MB IC lItttlit III Ittit Ilitt/ tlikti,till A W

P13 MR 1C I .11111t1./ IIIIIIII_L_LJ Illittir all A W

PR MR IC ItiltitIt_11 111 .1111 al Itittlitill A W

re MB IC l i i t t l t i l t 1 I t i . I I 1 1 1 1 l I I 1 L I 1_1_ j_j_ J A W

PR MR IC Iti.alj_jLjj loll alitit1 Ittollitill A VI

re MB IC Iltitilatil litillIlliti 1,11.11..11 A W

re MB IC 11111111,1 IllotitaltI LLIt_L I t t 1 i I A W

PEI MET 1C Ialtilioti) 1 itit1.1,11 Iltillt,til A VI

re MB TC itilllItial lo tillotill lit_j111111 A TV

IF BLANK DEFAULT IS TO CL(: *AL EVALUATION LEVEL

105

www.manaraa.com

EVALUATION RUN IDENTIr (CATION Ly
1 t 1 1 1 Li tit(t 1 I t till

PARTITIONING ASSIGNMENT CONSTRAINTS

ASSIGNMENT
TYPE
F - FIXED
I - INITIAL
P - PROHIBITED

COMPONENT
ASSIGNMENT
0 - DATA
T T. TASK

APPLICATION
COMPONENT
IDENTIFIER

CANDIDATE
CONFIGURATION
COMPONENT

IDENTIFIER VALUE IF APP.

LI

LI

LI

Ll

LI

LI

LI

LI

L1

LI

LI

LI

L1

LI

LI

LI

U

U

IIIIIIIIIL_IIIIII111
LIIIIIIiIIIIIIiiIii
litittmilltitIlit
1,1111titt111111111
I,Il 1 Illi_IIIIII(Jit

1, II 1 11_1_111111

l eIIIIIIIIIII1
ilili,11111)1

1 IIIIIIIIIIttl
1 ll 1 1 1 1 1 1 1 1

.

1111 1 Imijiiitilliiilliiiiiii_Lij
till 1li1 1 1 lItAill1111111111_1_1111LILiiItttillimIllitl
1111,1111111li1 1 1 t1 1 t111,11111 111

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC VALUES UNITS /VALUE MEANING

SYSTEMS REQUIREMENTS RSRID 20 Characters Used to un,queLy
FILE ID Identify system

being specified

2 SYSTEM INTERFACE
REQUIRED DEVICF.

For each component

.Identifier RICID 10 characters Components /denti
fior to map Into
candidate configu-
ration component
(IOPT-4)

.TechnoLogy type RICTT 2 character
code

Must match an entry
In the twchnology
category codes as
defined In the
technology data
base IOPT-5 group 2

.Specific Device
Identification

RICTD 10 characters Must match to de-
vice, In technology
data base IOPT-5
group 2 based upon
category type

ISSUE 1 DATE 27-NOV-79 ID DEALS

101'

SEC IOPT-1 PAGE

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC VALUES UNITS/VALUE MEANING

.Required options RICOP (k) Depende,t upon Options must befor Interfaces
where ks1 to number
of options for

RIC specified to match
format In tcchno-
Logy data bass

Technology type IOPT-5. group.
RICTT(i)

3 SYSTEM DATA BLOCK/
BUFFER

For each data block

.Block Identifier RSDBI

.System device Iden-
tifier to which
assigned

RSDBD

.Discipline RSDAT (1) 4 character
code

Some as DEALS-10PT5
Group 2 master data
discipliparcodes

.Maximum Records RSDAT (2) Positive
Integer

.Record Length RSDAT (3) Positive BITS
_Bits/Character Integer

-Mracters/Word RSDAT (4) Positive Characters
Integer

ISSUE 1 DATE 27-NOV-79 ID DEALS SEC IOPT -1 PAGE 2

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC VALUE6 UNITS/VALUE MEANING

-Minimum Words RSDAT (5) Positive words
Integer

-Maximum Words RSDAT (6) Positive words
Integer

-Average Words RSDAT (7) Positive words
Integer

4 SYSTEM FUNCTION
REQUIREMENTS

For each function

.Function Identifier RSFID 1E characters

.Execution frequency RSFFQ TBD
& timing

.Number of system RSFIS Positive
Interfaces serviced
by function

Integer

.Identifier for each'
system Interface J
serviced

RSFII (J) 6.characters Must match entry in
RICID (Group 2)

ISSUE 1 DATE 27-NOV-79 ID DEALS

103

SEC IOPT -1 PAGE 3

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMDNIC VALUES UNITS/VALUE MEANING

For each function to
function interface

.Interface Identi-
fier

RSMFI 10 characters Must match system
block of group 2

.Source function
identifier

RSMFS 10 characters Must match entry in
RSFID(i)

.Destination func-
tion Identifier

RSMFD 10 characters Must match entry in
RSFID(I)

.Communication RSMFC Positive Records/second
1Frequency Integer

ISSUE 1 DATE 27 -NOV -79 ID DEALS SEC IOPT -1 PAGE 4

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC VALUES UNITS/VALUE MEANING'

2

SOFTWARE JOB/TASK
FILE ID

GLOBAL DATA BLOCK
DEFINITIONS

For each data block

.Identifier

.Type

.Description block
attribute j

-Discipline

-Maximum Records

-Record length

.Bits/character

SWID

SDBID

SDBAT(J)

SDBAT(11

SDBAT(21

SDBAT(3)

characters

12 character
mnemonic

4 char. code

positive
integer

positive
Integer

22 characters maxi-
mum that identify
software definition
file used for run

SBID11).NE.SDBID(j)
for 1 .NE. 1

same as DEALS IPT-9
group I master data
discipline codes

bits

ISSUE 1 DATE 27-NOV-79 ID DEALS

111

SEC IOPT -2 PAGE 1

www.manaraa.com

DEALS

G7P PARAMETER NAME MNEMONIC VALUES UNITS/VALUE MEANING

3

.Characters/Word

Minimum words

-Maximum words

-Average words

TASK DEFINITIONS

For each task

-Task identifier

.Source Language

.Instruction mix
parameter K for
each instruction
typo J

SDBAT(4)

SOBAT(5)

SDBAT(b)

SDBAT(7)

STTSI

STSOL

STIMX
(J.k)

positive
Integer

Positive
Integer

positive
Integer

Positive
integer

6 characters

Character Coda

characters

word:: /record

words/record

words/record

Must match master
Language List
maintained in Tech-
nology Data Base
DEALS IOPT-5Thro.r a

ISSUE 1 DATE 27-NOV-79 ID DEALS

-4

SEC IOPT -2 PAGE 2

www.manaraa.com

DEALS

CRP PARAMETER NAME MNEMONIC VALUES UNITS/VALUE MEANING

-Identifier STIMX 10 character Must match master
(J.1)

.

code instruction list
maintained in tech-
nology data base
DEALS iorr-s- 9 ivoe.1

-Count for sizing STIMX
(J.2)

Positive
integer

-Execution counts
for timing

Average STIMX
(J,3)

positive
integer

Worst case STIMX
(J.4)

positive
integer

ISSUE 1 DATE 27-NOV-79 ID DEALS

11 n

SEC IOPT -2 PAGE 3

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC VALUES UNITS/VALUE MEANING

-Overlay Flag

.Data storage/
retrieval for each
block referenced
by task

-Block identifier

STOLF

STDBI

Character Code
0

N

Task resides on an
overlay and can b.
stored on disc when
not executing

Task does not re-
side on an overlay

ISSUE 1 DATE 27-NOV-79 ID DEALS SEC IOPT -2 PAGE 4

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC VALUES UNITS/VALUE MEANING

-Task data storage/
retrieval attribute
k with respect to
bLock records

.When requested

STDBR
(j,k)

STDBR
(J,I)

1 character
code

m-S-

="A"

aLL records pro-
cessed prior to the
bulk of processing

records processed

="E"

Indlurdually during
execution

records processed
after the bulk of
task processing

.How requested STDBR (2) 1 character
code

="I"

="U"

=-0-

Input to task

update by task(I /O)

task output

ISSUE 1 DATE 27-NOV-79 ID DEALS

1 1 U

SEC IOPT -2 PAGE 6

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC

.Ainimum processed

. Maximum processed

.Average processed

-Task execution
parameters

. Enablement type

ST

ST!

VALUES UNITS/VALUE MEANING

STXET

Positive
Integer

PosttIve
Integer

Positive
Integer

4 character
code

='DATA'

='TAD'

='BLVD'

records /task
execution

records/task
execution

records/task
e xecution

time enabled

data enabled

time and data
e nabLed

slaved

ISSUE 1 DATE 27-NOV-79 ID DEALS

110
SEC xorT-2 PAGE

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC VALUES UNITS/VALUE MEANING

-Maximum Time Limit ST1TL Positive Real SecondsPer Execution

BASELINE PARTITIOING
LOAD

For each represen:_a-
tive baseline lace
supply

_Benchmark identi-
fier

SLBMI 20 characters

_Partitioning total.
time period
duration

SLBMT Pos'ttive "AAA

ISSUE I DATE 27-NOV-79 ID DEALS SEC IOPT -2 PAGE 8

www.manaraa.com

DEALS

GRP PARAMETER MAME MNEMONIC VALUES UNITS/VALUE MEANING

.For each idepondent
task

-Identifier SLIT! b characters Task identifier

-Frequency for time
enabled or sl oy,)A.,:.

SLITF (*)

.Average SLITF (1)

.Worst Case SLITF (2)

-Data Arrival rate SLITD (*)
for Data enabled

.Average SLITD (1) Non - negative records per second
Real

.Worst Case SLITD (2) Non-negative records per second

-Maximum execute
time

.Average SLITT (1) Real. milliseconds

.Worst Case SLITT (2) Real milliseconds

ISSUE 1 DATE 27-NOV-79 ID DEALS SEC IOPT-2 PAGE 11

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC VALUES UNITS/VALUE MEANING

EVALUATION RUN IDEN-
TIFIERS

.Evaluation run
title

ETITL characters 20 characters maxi -
mum for run Iden-
tification

.Computation sub-
system interface
requirements
Identifier used to
label output and
fetch appropriate
system requirements
file data

ESWID characters 20 characters maxi-
mum. If blank 03..
sume value from
file otherwise per-
form equality check

.Baseline Software
Amplication task
definitions idynti
liar used to label
output and fetch
appropriate soft-
ware task/job deft-
nition file data

ESWID characters 20 characters maxi-
mum if blank as-
sume value from
file otherwise per-
form equality chock

.Candidate archltec-
ture identifier
used to label out-
put and fetch ap.-
proprlate candidate
architecture file
data

ECCID characters 2H-characters maxi-
mum. if blank as-
sume value from
file otherwise per-
form equality check

ISSUE 2 DATE 27-NOV-79 ID DEALS SEC IOPT -3 PAGE /

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC VALUES UNITS/VALUE MEANING

.TechnoLogg identi-
fier used to Label
output and fetch
appropriate techno-
logy data

ETDID characters 20 character maxi-
mym. if blank as-
sums uiLue from
file otherwise per-
form equality check

.Benchmark Load ID EPBMI 215 characters Must match one of
the Benchmark Load
Identifiers in
IOPT-2 Group 5

.Partition ID EPPID Integer

Initial

1.2 MPS Specific partition
from database

PIPS+1 Use highest number
partition in data
base

ISSUE DATE 19- DEC -79 ID DEALS SEC IOPT-3 PAGE

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC VALUES UNITS/VALUE MEANING

2 GLOBAL EVAULATION
FACTORS

.For each predefined.
Priority Level isi
to 3

-Objective Level. to
be assigned if
zero objective i

EFPLD(i) Positive
Integere15,1.2.3

is not applicable EFPLD (1)

EFPLD (2)

Level for processor
utilization

level for memory
allocation

EFPLD (3) Level for develop
ment cost

ISSUE 2 DATE 19-DEC-79 ID DEALS

121

SEC IOPT -3 PAGE

www.manaraa.com

DEALS .

GRP PARAMETER NAME MNEMONIC VALUES UNITS/VALUE MEANING

.Development cost
goal

EFDCG F10.2 Man Hours

.Development cost
upper limit

EFIYCU F10.2 EFDCU.GE.
EFDCG

Man Hours

.Basic unspecified EFMUB 0.LT.EFMUB.LT. %Memory utilization
goal percentage for
memory, utilization

1.0 that will provide
desir.ed storage
growth baLance

.Memory utilization
upper Limit

EFMUU EFMUB.LE.EFMUU
.LE.1

%Utilization

.Basic unspecified EFPUB 0.LT.EFPUB .LT. %Processor utiLiza-
goal percentage for
processor utilize-
tion

1.0 tion that will
provide desired
utilization
balance

.Processor utilize-
tion upper limit

EFPUU EFPUU .GE.EFPUB %Utilization

.Processed defauLt EFDCL (1) character code
coefficient level c'A' Average

...,,w. Worst case
.Memory default co- EFDCL (2) character code
efficient level ='A' Average

,...w. Worst Case
.Task default co- EFDCL (13) character code
efficient LoveL ='A' Average

,,w. Worst Case

ISSUE 2 DATE 19-DEC-79 ID DEALS

JL°'-.1

SEC. IOPT-3 PAGE

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC VALUES UNITS/VALUE MEANING

3 SPECIFIC EVALUATION
FACTORS

Selective goal i

attributes

-Goal type identi-
finr

-Component IdentI-
Fier

-Selective goal to
be utilized for
component i

EFCUS(1,13

EFCUS(2.I)

EFCUS(3,i)

2 character
code

='PB.

='FIC.

n'TC.

10 characters

0.LT.EFCUS(3,1)
.LT. 1.0 for

EFCUS(1,I)=
'PU' or 'HM'

EFCUS(3,i) .GT.
0 for EFCUS
(1.I)='TC'

Processor utiliza-
tion balance

Memory utilization
balance

Task development
cost

Must match memory
of processor
component identi-
fier in IOPT-4

%UtIlizatIon de-
sired for processor
and memory compo-
nents

Manyears

DATE 19- DEC -79 ID DEALS

23

SEC 'OPT-3 PAGE 5

www.manaraa.com

DFALS

GRP PARAMETER NAME MNEMONIC VALUES UNITS/VALUE MEANING

-SoLeLctive upper EFCUS(4,i) Same as
Limit goaL to be
utiLized for com-
ponent 1

EFCUS(3.1)

-Selective coeffi-
cient Level

EFCUS(5.1) I character
code

2 c'A' Average
..,...w. Worst case

ISSUE 2 DATE 27-NOV-79 ID DEALS
1;1 4
1 ..

SEC IOPT -3 PAGE 6

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC VALUES UNITS/VALUE MEANING

4 PARTITIONING ASSIGN-
MENT CONSTRAINTS

For each constraint

.Partition Map EPMAP(*)

-Type restriction EPMAP(1) character code
F Fixed allocation
I INItial allocation
P Prohibited alloca-

tion

-Task or data EPMAP(2) T Task
Assignment Flag B Block

-Task or data block
identifier

EPMAP(3) 6 characters Must match baseline
'software task iden-
tifier If EPMAP(2)
c'T'

10 characters Must match baseline
software data block
identifier If
EPMAP(3) =,1).

-Component identi-
fier

EPMAP(5) 113 characters Must match a candi-
date component
(IOPT -4 Group 2)
Identifier or re-
quired component
(/OPT-1 group 2)

T"!7.7AF 2 DATE 27-NDV -79 ID DEALS

125

SEC IOPT -3 PAGE 7

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC VALUES UNITS/VALUE MEANING

5 SELECTIVE COEFFI-
CIENTS

-Selective Coeffi-
dent levels may
override specific
technology compo-
nent attribute

.Component Identi-
fier

.Attribute index

.Coefficient Level
for Attribute

.Coefficient Levet
selections

-Software Load at-
tribute Level to
be ESLPR used in
coefficient deter-
minations

ESTPR (*)

ESTPR(1)

ESTPR(2)

ESTPR(3)

ESLPR

10 characters

character code/
same as for
EUTPR

Character code/
A

W

Must match compo-
nent identifier in
IOPT-4

Average numbers to
be applied
Worst case number
to be applied

ISSUE DATE 27-N0V-79 ID DEALS SEC IOPT -3 PAGE 8

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC VALUES UNITS /VALUE MEANING

-Basic unspecified
technology attrl-
bute level to be
used in coef-
ficient deterrni-
nations

EUTPR Character code/
A

W

Average numbers to
be applied
Worst case numbers
to be applied

IFSUE DATE 27-NOV-79 ID DEALS SEC IOPT -3 PAGE

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC VALUES UNITS/VALUE MEANING

CANDIDATE CONFIGURA-
TION DEFINITION

Candidate identifier CCID characters Maximum of 20 char-
acters which are
used to Label and
identify candidate
architecture
defined

2 CANDIDATE DEVICE
DEFINITION

For each component
device

.Identifier CCCSD 115 characters Candidate Component
Identifier

.Technology type CCCTT 2 character
code

Must match an entry
in the technology
category codes as
defined in the
technoLogy data
base IOPT-5 group 2

.Specific device
identification

CCCSD 10 characters Must match to de-
vice in technology
data base IOPT-5
group 2 based upon
category type

ISSUE 1 DATE 27-NOV-79 ID DEALS SEC IOPT-4 PAGE

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC VALUES UNITS/VALUE MEANING

.Selected option
for component

k CCCOP(R) Supplied options
are dependent upon
specific component
and correlate with
appropriate type/
identifier options
In techology data
base IOPT-5 group Z

ISSUE 1 DATE 27- NOV -79 ID DEALS

12

SEC IOPT-4 PAGE

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC VALUES UNITS/VALUE MEANING

2

TECHNOLOGY FILE IDEN-
TIFIER

MASTER TECHNOLOGY
LISTS MASTER CATE-
GORY LIST

Number of current
categories

For each category
1=1 to TCNC

.Category identifier

The first three are
the primary areas
required for soft-
ware paritioning.
The others represent
sources or destine-
+-Ion for processing
I/O and only require
as a minimum respec-
tIve I/O transfer
rates, blocking, and
protocol interface.
Category 15 labeled
black box is a catch
all category. Other

TOBID

TCNC

TCCI(i)

TCCI(1)
TCCI(2)

TCCI(3)
TCCI(4)

TCCI(6)

TCCI(6)
TCCI(7)
TCCI(8)
TCCI(9)
TCCI(I8)

28 Characters

Positive
Integer=14

2 character
code

PU
CL

,

MM
CP

CC

KB
DP
MB
GE
IC

.

Tentative List
includes=

=processor unit
=communication Line
(voice /da.a)

=memory
=cockpit instrumen-
tation panels
=cockpit controls/
switches
=keyboard/teletype
=display
=motion base
xf-g" equipment
=instructor/opera-
for control swit-
ches

ISSUE I DATE 27-NOV-79 ID DEALS SEC IOPT -5 PAGE 1

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC VALUES UNITS/VALUE MEANING

categories can be TCCI(11) CM =TV Camera/Model
added. The particu- board
ler design 'value- TCCI(12) PR =Printer
tion environment TCCI(13) CR =Card reader
must be considered
as to what catego-
ries and Level of
data needs to be
collected.

TCCI(14) 811 =Black box

MASTER DEVICE LIST
FOR CATEGORY 1

.Number of devices
of category

I

currently In tech-
nology data base

TCND(1) Non negative
integer

.Device list (for
category I) of
device identifiers
JF1 to TCND(I)

TCOL(1.J) 10 characters Each entry must be
unique within the
List for given
category i

MASTER INSTRUCTION
LIST

.Number of benchmark
instructions

ICH! positive
integer

.Instruction List TCIL(1) 18 character TCIL(1) not equal
for Instruction 1.=1
to TCNI

code TCIL(J) for i

not equal J

ISSUE 1 DATE 27-NDV-79 ID DEALS

131

SEC IOPT-5 PAGE

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC VALUES UNITS/VALUE :EANING

MASTER BLOCK DISCIP-
LINES

.Number of discip-
lines

TCNBD positive
integers7

.Lest of discipline
keys for i=1 to

TCBDL(i) 4 character
codes

TCNBD in alpha- TCBDL(1) ='CBUF' circular buffer
numeric order TCBDL(2) = 'FIFO' queue

TCODLc3) ='LIFO' stack
TCBDL(4) ='RAN' random I/O
TCBDL(5) s'ROR' read only random
TCBDL(6) m'ROS' read only sequen-

tial
TCBDL(7) m'SE0' sequential I/O

MASTER BLOCK TYPES

.Number of types TCNBT Positive
integer=5

.List of block type
keys for 1st to

TCBTL(i) 1 character
code

TCNBT in alpha- TCBTL(1) s'G' global
numeric order TCBTL(E) ,.I.

Instructions
TCBTL(3) s'L. local
TCBTL(4) m'S' system
TCBTL(3) n'T. temporary or

scratch

ISSUE 1 DATE 27-NOV-79 ID DEALS 10"-)

SEC IOPT-5 PAGE 3

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC VALUES UNITS/VALUE MEANING

3

MASTER DEVELOPMENT
SOURCE LANGUAGES

.Number of languages

.List of language
keys for 1=1 to
TCNL In alpha-
numerical order

PROCESSOR ATTRIBUTES
FOR EACH PROCESSOR P

Operating System
Features

.Multitasking

-Levels

TCNL

TCLL (I)

TPOSM(p.1)

Positive
Integer

10 characters

Integer .GE. 1 Number of distinct
task execution
Levels

ISSUE 1 DATE 27-NOV-79 ID DEALS

13 f)I)

SEC IOPT-5 PAGE 4

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC VALUES UNITS/VALUE MEANING

-Number of priority
service levels

TPOSM(p.2) Integer The remaining TPOSM
(p.1)-TPOSM(0.2)

.GE. 0

.LE.TPOSM(p.1)

Levels are assumed
to be service In a
circular fashions

.Enablomonts

-Maximum Time
enabLement fre-
quency

TPOSM(P.3) Integer Enablements/second

-Resource manage-
ment per time
enabLement

TPOSM(p.4) F10.9 .GE. 0 Seconds accurate
to Nano seconds

-Maximum data
enabLement fre-
quency

TPOSM(P.5) Integer EnabLements/second

-Resource manage-
ment per data
enabLement

TPOSM(p.6) . FIO.9 .GE. 0 Seconds accurate to
Nano seconds

-Maximum slaved
enabLement ire-
que-Icy

TPOSM(p.7) Integer EnabLements/second

-Resource manage-
ment per slaved
snablement

TPOSM(p.8) F10.9 .GE. 0 Seconds rt..curate
to Nano seconds

IFlUE 1 DATE 20-DEC-79 ID DEALS
i 1.) ^.

-1

SEC IOPT -5 PAGE

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC !VALUES UNITS/VALUE MEANING

-Resource manage-
ment overhead per
second per task

TPOSM(P.9) F10.9 .GE. 0 Seconds accurate to
Nano seconds

.For each task Level
L=1 to TPOSM(p.2)

-Maximum number of
tasks Level L

TPOLT
(p.L.1)

Integer .GE. 1

-Task service
scheme for Level. L

TPOLS
(p.1.2)

Code

n'p. Priority
,.c. Circular
='F' First in first out

_Level. resource TPOLM F1B.9 .GE.0 Seconds accurate to
management (D.L.3) Nano seconds

.List of compatible
user memories

Simulation instruc-
tion set measurements
for each benchmark
instruction i

.Sizing measurements

-Number of code
memories involved

TPSCM(p.()

ISSUE 1 DATE -DEC-79 ID DEALS

1.35

SEC IOPT -5 PAGE 6

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMCNII VALUES UNITS/VALUE MEANING

The memory type for TPSMT 4*character Must agree with
each code memory m
(the first memory is
the user task code--
any other memories
are predefined for
this processor)

-Length of code in

(13.1.m)

TPSMT

code

Integer .GE.1

master memory
types defined in
Group 4

Number of basis
memory m (P,I,m.3) units used to

deslrbe memory m

.Timing Measurements
for each code
memory m and ku1,2

(see Group 4)

k21 implies average
1(22 implies worst
case

-Number of instruc-
tion of scratch
data fetch waits

TPTM
(P.I.m,
1.k)

Integer .GE. 2

-Number of scratch
data store waits

TPTM
(13.1.m.

Integer .GE. 2

2,k)

-Computational
total for all
memories

TPTT
(p,i,k)

Integer .GE. 2 Cycles

ISSUE 1 DATE 14-AUG-79 ID DEALS SEC IOPT-5 PAGE 7

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC VALUES UNITS/VALUE MEANING

.ApplscatIon deve-
lopment measurements
using language l of
the master language
list

-One time develop-
ment charge

TPDC
(p.1.1.1)

Integer Manhours

-Change per appli-
cation Instruction
of this type

TPDC
(p.1,2,1)

Integer Manhours

4 COMMUNICATION LINE To be defined In
ATTRIBUTES Multiple processor

communication
analysis task

5 MEMORY ATTRIBUTES FOR
MEMORY DEVICE M

Type TMTP(m) 4 characters

c'ROM'

c'RAMM'

c'RRAM'

c'SM'

Read only memory

Random access main
memory

Rotating random
access memory

Sequential memory

ISSUE 1 DATE 2O-DEC-79 ID DEALS

137

SEC IOPT -5 PAGE 8

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC VALUES UNITS /VALUE MEANING

o'WCS' Writable Control
Store

Number of different
addressable units

TMNAU Positive
Integer

Size in bits

.Min TMS2(m.1) positive
integer

bits

.Max TMS2(m.2) positive
integer

bits

.Increments TMS2(m.3) positive
integer

bits

For each addessable
unit u=I to TMNAU
.Level TMAUP

(m.u,1)
4 character
code
='BIT°
=.6BB'

='8138'

='WORD'
n'HWRD'

='DBWD'

bit addressable
six bit byte
addressable

eight bit byte
addressable

word addressable
half word
addressable

doubleword
addressable

ISSUE I DATE ZO-DEC-79 ID DEALS

133
SEC IOPT-5 PAGE 9

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC VALUES UNITS/VALUE MEANING

.Bits /unit level THAW' positive exclusive of parity
(m.u.2) Integer or error deletion

correction bits

.Read access time TMAUP
(m.u.3)

real Seconds accurate to
nano-seconds

.Read cycletime per TMAUP real Seconds accurate to
unit (m.u,4) nano-seconds

.Maximum sequential TMAUP positive same as unit Level
units transferred
for single read

(m,u,5) integer

.Write cocoa time TMAUP
(m.u.6)

real Seconds accurate to
nano-seconds

.Write cycletime/ TMAUP real Seconds accurate to
unit (m.u.7) nano-seconds

Max sequential TMAUP positive same as unit Level
units for single
write access

(m.u,B) integer

.Error detection/ TMAUP 6 character
correction (m,u.9) code

='PARITY'

n'SECDED.

parity bit

single bit error
correction
double bit error
detection

ISSUE 1 DATE 21-DEC-7T ID DEALS SEC IOPT-5 FADE

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC VALUES UNITS/VALUE MEANING

Number of Suppliers
for each suppLier

TPMNS(m? positive
Integer

.Identifier TPMSP III characters unique identifier
(m.s.I)

.MTBF (TPMSP
(m.s.2)

real hours -mein time
between failures

.MTTR TPMSP
(m.s.3)

real hours-mean time to
repair

.MSPM TPMSP
(m.s.4)

real. hours-rescheduled
preventative maint-
enance

.MTPM TPMSP
(m.s.5)

real hours -mean time for
preventative maint-
enance

6 COCKPIT INSTRUMENTA-
TION PANEL ATTRIBUTES

7 COCKPIT CONTROLS/
SWITCHES

8 KEYBOARD/TELETYPE
ATTRIBUTES

9 DISPLAY ATTRIBUTES

ISSUE 1 DATE 6- AUG -79 ID DEALS 1 4 ;) SEC IOPT-8 PAGE 11

www.manaraa.com

DEALS

GRP PARAMETER NAME MNEMONIC VALUES UNITS/VALUE MEANING

10 MOTION BASE ATTRI-
BUTES

11 "G' EQUIPMENT ATTRI-
BUTES

12 INSTRUCTOR/OPERATOR
CONTROL/SWITCH ATTRI-
BUTES

13 TV. CAMERA/MODEL BOARD
ATTRIBUTES

14 PRINTER ATTRIBUTES

15 CARD READER ATTRI-
BUTES

16 GENERIC BLACKBOX
ATTRIBUTES

ISSUE 1 DATE 6-AUG-79 ID DEALS

141

SEC IOPT-5 PAGE 12

www.manaraa.com

APPENDIX B.

REPORT FORMATS

142

138

www.manaraa.com

MM/DD/YY HH:MM:SS EVALUATION
CANDIDATE

SYSTEM
TECHNOLOGY

SOFTWARE

FORMAT 1. STANDARD RUN IDENTIFICATION

143

PASS PAGE

C

m
;01

C)

0

10

0

114

www.manaraa.com

HARDWARE COMPONENT SUMMARY

CATEGORY/DEVICE ID REQUIRED

XX XXXXXXXXXX XXXXXXXXXX XXX

XX XXXXXXXXXX XXXXXXXXXX XXX

XX XXXXXXXXXX XXXXXXXXXX XXX

*** TOTAL NUMBER OF COMPONENTS = 9999

FORMAT 2. HARDWARE COMPONENT SUMMARY

www.manaraa.com

DATA BLOCK SUMMARY AND EXTERNAL SOURCE/DESTINATION

LEVEL DISCIPLINE MAXIMUM BITS/ BYTES/ WORDS-PER-RECORD EXTERNAL COMPONENT
BLOCK IDENTIFIER -FLAG -FLAG RECORDS BYTE WORD AVE MIN MAX BASIC SPEC FREQUENCY

999 XXXXXXXXXX X-XX XXXX-XX 999999 9 99 9999 9999 9999 XXXXXX 999 999

999 XXXXXXXXXX X-XX XXXX-XX 999999 9 99 9999 9999 9999 XXXXXX 999 999

FORMAT 3. DATA BLOCK SUMMARY

146

www.manaraa.com

TASK SUMMARY

INPUT OUTPUT ENABLEMENT FREQ FREQ FREQTASK IDENTIFIER LANGUAGE BLOCKS BLOCKS DISCIPLINE 1 2 3

99 XXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXX 9999 9999 9999
XXXXXXXXXX

99 XXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXX 9999 9999 9999
XXXXXXXXXX XXXXXXXXXX
XXXXXXXXXX XXXXXXXXXX

FORMAT 4. TASK SUMMARY

147

www.manaraa.com

BASELINE LOAD SUMMARY

BASELINE LOAD XXXXXXXXXXXXXXXXXXXX

PARTITIONING TOTAL TIMEFRAME 9999999999

TIME/SLAVED RATE DATA ENABLED RATE TIME LIMIT PER EXECUTION
TASK ENABLEMENTS/SECOND ENABLEMENTS/SECOND MILLISECONDS
ID AVERAGE MAXIMUM AVERAGE MINIMUM AVERAGE MAXIMUM

XXXXXX 9999999999 9999999999 9999999999 9999999999 9.99999999E+99 9.99999999E+99

XXXXXX 9999999999 9999999999 9999999999 9999999999 9.99999999E+99 9.99999999E+99

XXXXXX 9999999999 9999999999 9999999999 9999999999 9.99999999E+ 9.99999999E+99

FORMAT 5. BASELINE LOAD SUMMARY

148

www.manaraa.com

EVALUATION ASSIGNMENT CONSTRAINTS

APPLICATION CONFIGURATION VALUE
ASSIGNMENT COMPONENT COMPONENT COMPONENT WHEN

TYPE* ASSIGNED** IDENTIFIER IDENTIFIER APPLICABLE

XXXXXXXXXX XXXX XXXXXXXXXX ON XXXXXXXXXX XXXXXXXXXX

XXXXXXXXXX XXXX XXXXXXXXXX ON XXXXXXXXXX XXXXXXXXXX

XXXXXXXXXX XXXX XXXXXXXXXX ON XXXXXXXXXX XXXXXXXXXX

FIXED
PROHIBITED ** DATA
INITIAL TASK

FORMAT 6. EVALUATION ASSIGNMENT CONSTRAINTS

14J

www.manaraa.com

EVALUATION PRIORITIES

LEVEL

MAJOR PRIORITIES

GOAL/
PRIORITY IDENTIFIER/ TOLERANCE

UNITS

COEFFICIENT
LEVEL &
MAX ITER

COMPONENT

PRIORITY COMPONENTS

GOAL
TOLERANCE
PERCENT

9 XXXXXXXXXXXXXXXXXXXX 99999.99 C XXXXXXXXXX 99999.99 99.999XXXXXXXXXX 99.999 9999

9 XXXXXXXXXXXXXXXXXXXX 99999.99 C XXXXXXXXXX 99999.99 99.999
XXXXXXXXXX 99.999 9999

9 XXXXXXXXXXXXXXXXXXXX 99999.99 C XXXXXXXXXX 99999.99 99.999XXXXXXXXXX 99.999 9999

XXXXXXXXXX 99999.99 99.999

XXXXXXXXXX 99999.99 99.999

XXXXXXXXXX 99999.99 99.999

FORMAT 7. EVALUATION PRIORITIES

IUtJ

www.manaraa.com

BASIC PARTITIONING PROBLEM SIZE

999 TASKS
. 99 PROCESSORS

999 DATA BLOCKS 99 MEMORIES

9 PRIORITIES SELECTED

FORMAT 8. BASIC PARTITIONING PROBLEM SIZE

151

www.manaraa.com

MAJOR PRIORITIES

GOAL;
PRIORITY IDENTIFIER! TOLERANCE

PRIORITY GOAL SUMMARY

CURRENT
ACHIEVEMENT/

PRIORITY COMPONENTS

TOLERANCE
CURRENT

ACHIEVEMENTLEVEL UNITS LEV/FLAG COMPONENT GOAL PERCENT LEVEL FLAG

9 XXXXXXXXXXXXXXXXXXXX 99999.99 99999.99 XXXXXXXXXX 99999.99 99.999 9999.99 FF CAIXXXXXXXXXX 99.999 FF

IN,
XXXXXXXXXX 99999.99 99.999 9999.99 FF

VI
XXXXXXXXXX 99999.99 99.999 9999.99 FF Q

r--9 XXXXXXXXXXXXXXXXXXXX 99999.99 99999.99 XXXXXXXXXX 99999.99 . 99.999 9999.99 FF C::XXXXXXXXXX 99.999 FF --i

XXXXXXXXXX 99999.99 99.999 9999.99 FF CD2
9 XXXXXXXXXXXXXXXXXXXX 99999.99 99999.99 XXXXXXXXXX 99999.99 99.999 9999.99 FF LAXXXXXXXXXX 99.999 FF

C::

XXXXXXXXXX 99999.99 99.999 9999.99 FF

XXXXXXXXXX 99999.99 99.999 9999.99 FF

72
XXXXXXXXXX 99999.99 99.999 9999.99 FF

ril
V/

FORMAT 101. PRIORITY GOAL SUMMARY

152

www.manaraa.com

TASK ALLOCATION

TASK PROCESSOR EXECUTIONS
TOTAL
TIME FLAG BLOCK

TASK I/O
MEMORY INPUT OUTPUT

XXXXXX XXXXXXXXXX 999/999 9.99999 FF XXXXXX XXXXXXXXXX 9.999999 9.999999

XXXXXX XXXXXXXXXX 9.999999 9.999999

XXXXXX XXXXXXXXXX 9.999999 9.999999

XXXXXXXXXX 999/999 9.99999 FF XXXXXX XXXXXXXXXX 9.999999 9.999999

XXXXXX XXXXXXXXXX 9.999999 9.999999

XXXXXX XXXXXXXXXX 9.999999 9.999999

XXXXXX XXXXXXXXXX 999/999 9.99999 FF XXXXXX XXXXXXXXXX 9.999999 9.999999

,XXXXX XXXXXXXXXX 9.999999 9.999999

FORMAT 102. TASK ALLOCATION

5

www.manaraa.com

DATA BLOCK ALLOCATION

BLOCK MEMORY LENGTH PERCENT PROCESSOR STORES FETCHES TOTAL FLAG

XXXXXX XXXXXXXXXX 999999 99,99 XXXXXXXXXX 999999 999999 9999999 FF

XXXXXXXXXX 999999 999999 9999999 FF

XXXXXXXXXX 999999 999999 9999999 FF

XXXXXXXXXX 999999 99,99 XXXXXXXXXX 999999 999999 9999999 FF

XXXXXX XXXXXXXXXX 999999 99,99 XXXXXXXXXX 999999 999999 9999999 FF

FORMAT 103, DATA BLOCK ALLOCATION

1.51
15.5

www.manaraa.com

PROCESSOR ALLOCATION

PROCESSOR TASK EXECUTIONS COMPUTATIONAL
TIME PERCENT

PROCESSOR UTILIZATION

INPUT/OUTPUT RESOURCE MGMT
TIME PERCENT TIME PERCENT

FLAG

XXXXXXXXXX XXXXXXXXXX 999 9.9999 99.99 9.9999 99.99 9.9999 99.99 FF

XXXXXXXXXX 999 9.9999 99.99 9.9999 99.99 9.9999 99.99 FF

XXXXXXXXXX 999 9.9999 99.99 9.9999 99.99 9.9999 99.99 FF

TOTAL 99999 99.9999 99.99 9.9999 99.99 9.9999 99.99 FF

FORMAT 104. PROCESSOR ALLOCATION

www.manaraa.com

MEMORY ALLOCATION

MEMORY BLOCK LENGTH PERCENT PROCESSOR STORES FETCHES TOTAL FLAG

XXXXXXXXXX XXXXXXXXXX 999999 99,99 XXXXXXXXXX 999999 999999 9999999 FF

XXXXXXXXXX 999999 99.99 XXXXXXXXXX 999999 999999 9999999 FF

XXXXXXXXXX 999999 999999 9999999 FF

**TOTAL 999999 99,99 XXXXXXXXXX 999999 999999 9999999 FF

XXXXXXXXXX 999999 999999 9999999 FF
.
0

**TOT PROC 9999999 9999999 99999999 FF
.

FORMAT 105, MEMORY ALLOCATION

